Skip to main content
Log in

Transmembrane signaling in kidney health and disease

  • Basic Science Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Transmembrane signal transduction is the process whereby a ligand binds to the external surface of the cell membrane and elicits a physiological response specific for that ligand and cell type. It is now appreciated that numerous disease states represent disturbances in normal transmembrane signaling mechanisms. In the current paper, we focus our attention on the mesangial cell of the glomerular microcirculation as a prototypical model system for understanding normal and abnormal transmembrane signaling processes. Among the major receptor and effector mechanisms for transmembrane signal transduction in the mesangial cell, this paper emphasizes the phospholipase effector response to growth factors and vasoactive hormones. The post-translational and transcriptional pathways for regulation of phospholipase C and phospholipase A2 are described, including consideration of perturbations in these systems that characterize two disease models, namely: acute cyclosporine nephrotoxicity and early diabetic glomerulopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lucas PC, Granner DK (1992) Hormone response domains in gene transcription. Annu Rev Biochem 61: 1131–1173

    Google Scholar 

  2. Leid M, Kastner P, Chambon P (1992) Multiplicity generates diversity in retinoic acid signalling pathways. Trends Biochem Sci 17: 427–433

    Google Scholar 

  3. Ausiello DA (1990) Symposium on signal transduction. Kidney Int 36: 945–948

    Google Scholar 

  4. Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9: 383–391

    Google Scholar 

  5. Hepler JR, Gilman A (1993) G proteins. Trends Biochem Sci 17: 383–387

    Google Scholar 

  6. Berridge MJ (1993) Inositol triphosphate and calcium signaling. Nature 361: 315–325

    Google Scholar 

  7. Aoyama A, Klemenz R (1993) Oncogene-mediated effects on cellular gene expression. Crit Rev Oncol Hemat 4: 53–94

    Google Scholar 

  8. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S (1991) Oncogenes and signal transduction. Cell 64: 281–302

    Google Scholar 

  9. Skorecki KL, Bichet D, Brenner BM (1994) Impact of cellular and molecular biology on nephrology. In: Isselbacher KI, Braumwald E, Wilson JD, Martin JB, Fauci AS, Casper DL (eds) Harrison's principles of internal medicine, 13th edn. McGraw Hill, New York, pp 1255–1259

    Google Scholar 

  10. Mene P, Simonson S, Dunn MJ (1989) Physiology of the mesangial cell. Physiol Rev 69: 1347–1421

    Google Scholar 

  11. Mene P, Cinotti GA, Pugliese F (1992) Signal transduction in mesangial cells. J Am Soc Nephrol 2: S100-S106

    Google Scholar 

  12. Striker LJ, Peten FP, Elliot SJ, Doi T, Striker GE (1991) Mesangial cell turnover: effect of heparin and peptide growth factors. Lab Invest 64: 446–456

    Google Scholar 

  13. Avner E (1990) Polypeptide growth factors and the kidney: a developmental perspective. Pediatr Nephrol 4: 345–353

    Google Scholar 

  14. Bonventre JV (1992) Phospholipase A2 and signal transduction. J Am Soc Nephrol 3: 128–150

    Google Scholar 

  15. Troyer DA, Kreisberg JI (1990) Isolation and study of glomerular cells. Methods Enzymol 191: 141–152

    Google Scholar 

  16. Rhee SG (1991) Inositol phospholipid-specific phospholipase C: interaction of the γ1 isoform with tyrosine kinase. Trends Biochem Sci 16: 297–301

    Google Scholar 

  17. Asaoka Y, Nakamura S, Yoshida K, Nishizuka Y (1993) Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 17: 414–417

    Google Scholar 

  18. Ayo SH, Radnik RA, Garoni J, Glass WF II, Kreisberg JI (1990) High glucose causes an increase in extracellular matrix proteins in cultured mesangial cells. Am J Pathol 136: 1339–1348

    Google Scholar 

  19. Ferris CD, Snyder SH (1992) IP3 receptors: ligand-activated calcium channels in multiple forms. Adv Second Messenger Phosphoprotein Res 26: 95–107

    Google Scholar 

  20. Randriampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364: 809–814

    Google Scholar 

  21. Parekh AB, Terlau H, Stuhmer W (1993) Depletion of IP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature 364: 814–817

    Google Scholar 

  22. Kremer SG, Zeng W, Hurst R, Ning T, Whiteside C, Skorecki KL (1994) Chloride is required for receptor mediated divalent cation entry in mesangial cells. J Cell Physiol (in press)

  23. Kreisberg JI, Venkatachalam MA, Radnik RA, Patel PY (1985) Role of myosin light chain phosphorylation and microlubules in stress fiber morphology in cultured mesangial cells. Am J Physiol 249: F227-F235

    Google Scholar 

  24. Cai H, Erhardt P, Troppmair J, Diaz-Meco MT, Sithanandam G, Rapp UR, Moscat J, Cooper GM (1993) Hydrolysis of phosphatidylcholine couplesRas to activation of R protein kinase during mitogenic signal transduction. Mol Cell Biol 13: 7645–7651

    Google Scholar 

  25. Johansen T, Bjorkoy G, Overvatn A, Diaz-Meco MT, Traavik T, Moscat J (1994) NIH 3T3 cells stably transfected with the gene encoding phosphatidylcholine-hydrolyzing phospholipase C fromBacillus cereus acquire a transformed phenotype. Mol Cell Biol 14: 646–654

    Google Scholar 

  26. Dennis EA, Rhee SG, Billah MM, Hannun YA (1991) Role of phospholipases in generating lipid second mesengers in signal transduction. FASEB J 5: 2068–2077

    Google Scholar 

  27. Gronich J, Konieczkowski M, Gelb MH, Nemenoff RA, Sedor JR (1994) Interleukin 1 alpha causes rapid activation of cytosolic phospholipase A2 by phosphorylation in rat mesangial cells. J Clin Invest 93: 1224–1233

    Google Scholar 

  28. Baird NR, Morrison AR (1993) Amplification of the arachidonic acid cascade: implications for pharmacologic intervention. Am J Kidney Dis 21: 557–564

    Google Scholar 

  29. Hack N, Margolis B, Schlessinger J, Skorecki KL (1991) Interaction of epidermal growth factor with vasoactive hormones in the regulation of phospholipase A2. J Basic Clin Physiol Pharmacol 2: 161–180

    Google Scholar 

  30. Margolis B, Bonventre J, Kremer S, Kudlow J, Skorecki KL (1988) Epidermal growth factor is synergistic with phorbol esters and vasopressin in stimulating arachidonic release and prostaglandin production in renal glomerular mesangial cells. Biochem J 249: 587–592

    Google Scholar 

  31. Margolis B, Holub B, Troyer DL, Skorecki KL (1988) Epidermal growth factor stimulates phospholipase A2 in vasopressin-treated rat glomerular mesangial cells. Biochem J 256: 469–474

    Google Scholar 

  32. Pfeilschifter J, Schalkwijk C, Briner VA, Bosch H van den (1993) Cytokine-stimulated secretion of group II phospholipase A2 by rat mesangial cells. Its contribution to arachidonic acid release and prostaglandin synthesis by cultured rat glomerular cells. J Clin Invest 92: 2516–2523

    Google Scholar 

  33. Gronich JH, Bonventre JV, Nemenoff RA (1990) Purification of a high molecular weight form of phospholipase A2 activated by physiological calcium concentrations. Biochem J 271: 37–43

    Google Scholar 

  34. Clark JD, Milona N, Knopf JL (1990) Purification of a 110 kilodalton cytosolic phospholipase A2 from the human monocytic line U937. Proc Natl Acad Sci USA 87: 7708–7712

    Google Scholar 

  35. Wijkander J, Sunder G (1991) A 100-kDa arachidonic acid mobilizing phospholipase A2 in mouse spleen and the macrophage cell line J774. Eur J Biochem 202: 873–880

    Google Scholar 

  36. Kramer RM, Roberts EP, Manetta J, Putman JE (1991) The Ca2+ sensitive cytosolic phospholipase A2 is a 100 kDa protein in human monoblast U937 cells. J Biol Chem 266: 5268–5272

    Google Scholar 

  37. Sharp JD, White DL, Chou XL, Goodson T, Gamboa GC, McClure D, Hoskin BS (1991) Molecular cloning and expression of human Ca2+ sensitive cytosolic phospholipase A2. J Biol Chem 266: 14850–14853

    Google Scholar 

  38. Clark JD, Lin L-L, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL (1991) A novel arachidonic acid selective cytosolic phospholipase A2 contains a calcium dependent translocation domain with homology to PKC and GAP. Cell 65: 1043–1051

    Google Scholar 

  39. Goldberg HJ, Viegas MM, Margolis B, Schlessinger J, Skorecki K (1990) The tyrosine kinase activity of the epidermal growth factor receptor is necessary for phospholipase A2 activation. Biochem J 267: 461–465

    Google Scholar 

  40. Hack N, Margolis B, Ullrich A, Schlessinger J, Skorecki K (1991) Distinet structural specifities for the functional coupling of the epidermal growth factor receptor to calcium signaling versus phospholipase A2 responses. Biochem J 275: 563–567

    Google Scholar 

  41. Lin L-L, Lin AY, Knopf JL (1992) Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci USA 89: 6147–6151

    Google Scholar 

  42. Nemenoff RA, Winitz S, Qian N-X, Putten V van, Johnson GL, Heasley LE (1993) Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein kinase and protein kinase C. J Biol Chem 268: 1960–1964

    Google Scholar 

  43. Warner LC, Hack N, Egan SE, Goldberg HJ, Weinberg RA, Skorecki KL (1993)Ras is required for epidermal growth factorstimulated arachidonic acid release in rat-1 fibroblasts. Oncogene 8: 3249–3255

    Google Scholar 

  44. Maxwell AP, Goldberg HJ, Tay AH, Li ZG, Arbus GS, Skorecki KL (1993) Epidermal growth factor and phorbol myristate acetate increase expression of the mRNA for cytosolic phospholipase A2 in glomerular mesangial cells. Biochem J 295: 763–766

    Google Scholar 

  45. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 72: 269–278

    Google Scholar 

  46. Durstin M, Durstin S, Moloki TF, Bevar EL, Sh'afi RI (1994) Cytoplasmic phospholipase A2 translocates to membrane fraction in human neutrophils activated by stimuli that phosphorylates mitogen-activated protein kinase. Proc Natl Acad Sci USA 91: 3142–3146

    Google Scholar 

  47. Wood KW, Sarnecki C, Roberts TM, Blenis J (1992)Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell 68: 1041–1050

    Google Scholar 

  48. Thomas SM, DeMarco M, D'Arcangelo G, Halegoua S, Brugge JS (1992)Ras is essential for nerve growth factor and phorbol esterinduced tyrosine phosphorylation of MAP kinases. Cell 68: 1031–1040

    Google Scholar 

  49. Hack N, Sue-A-Quan A, Mills GB, Skorecki KL (1993) Expression of human tyrosine kinase-negative epidermal growth factor receptor amplifies signaling through endogenous murine epidermal growth factor receptor. J Biol Chem 268: 26441–26446

    Google Scholar 

  50. Blumer KJ, Johnson GL (1994) Diversity in function and regulation of MAP kinase pathways. Trends Biochem Sci 222: 236–240

    Google Scholar 

  51. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA (1993) Association of SOSRas exchange protein with grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363: 45–51

    Google Scholar 

  52. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D (1993) The SH2 and SH3 domains of mammalian grb2 couple the EGF receptor to theras activator mSos1. Nature 363: 83–85

    Google Scholar 

  53. Li N, Batzer A, Daly R, Yajnik V, Skolnik E, Cardin P, Bar-Sagi D, Margolis B, Schlessinger J (1993) Guanine-nucleotide-releasing factor Sos1 binds to grb2 and links receptor tyrosine kinases toras signaling. Nature 363: 85–88

    Google Scholar 

  54. Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Bar-Sagi D (1993) Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange onras. Nature 363: 88–92

    Google Scholar 

  55. Schlessinger J (1993) How receptor tyrosine kinases activateras. Trends Biochem Sci 18: 273–275

    Google Scholar 

  56. Boguski MS (1993) Proteins regulatingras and its relatives. Nature 366: 643–654

    Google Scholar 

  57. Hordijk PL, Verlaan I, Van Corven ET, Moolenar WH (1994) Protein tyrosine phosphorylation induced by lysophosphatidic acid in Rat-1 fibroblast. Evidence that phosphorylation of MAP kinase is mediated by the Gi-p21ras pathway. J Biol Chem 269: 645–651

    Google Scholar 

  58. Wang Y, Simonsen MS, Pouyssegur J, Dunn MJ (1992) Endothelin stimulates mitogen-activated protein kinase activity in rat mesangial cells. Biochem J 287: 589–594

    Google Scholar 

  59. Hack N, Clayman P, Skorecki KL (1990) A role for G-proteins in the epidermal growth factor stimulation of phospholipase A2 in rat kidney mesangial cells. Biosci Rep 10: 353–362

    Google Scholar 

  60. Goldberg H, Maxwell P, Hack N, Skorecki KL (1994) Reduced phospholipase A2 activity is not accompanied by reduced arachidonic acid release. Biochem Biophys Res Commun 198: 220–227

    Google Scholar 

  61. Hoeck WG, Ramesha CS, Chang DJ, Fan N, Heller RA (1993) Cytoplasmic phospholipase A2 activity and gene expression are stimulated by tumor necrosis factor: dexamethasone blocks the induced synthesis. Proc Natl Acad Sci USA 90: 4475–4479

    Google Scholar 

  62. Piomelli D (1993) Arachidonic acid in cell signaling. Curr Opin Cell Biol 5: 274–280

    Google Scholar 

  63. Kujubu DA, Herschmann HR (1992) Dexamethasone inhibits mitogen induction of the TIS10 prostaglandin synthase/cyclooxygenase gene. J Biol Chem 267: 7991–7994

    Google Scholar 

  64. Smith W (1992) Prostanoid biosynthesis and mechanisms of action. Am J Phys 263: F181-F191

    Google Scholar 

  65. Simonson MS, Wolfe JA, Konieczkowski M, Sedor JR, Dunn MJ (1991) Regulation of prostaglandin endoperoxide synthase gene expression in cultured rat mesangial cells: induction via a protein kinase C-dependent mechanism. Mol Endocrinel 5: 441–451

    Google Scholar 

  66. Fletcher BS, Kujubu DA, Perrin DM, Herschmann HR (1992) Structure of the mitogen-inducible TIS10 gene and demonstration that the TIS 10-encoded protein is a functional prostaglandin G/H synthase. J Biol Chem 267: 4338–4344

    Google Scholar 

  67. Tay A, Squire J, Goldberg H, Skorecki K (1994) Assignment of the human prostaglandin G synthase gene to 1q25 by fluorescence in situ hybridization. Genomics (in press)

  68. Tay A, Simon J, Squire J, Jacob H, Skorecki KL (1995) Cytosolic phospholipase A2 gene in human and rat: chromosomal localization and polymorphic markers. Genomics 95: (in press)

  69. Simonson MS, Dunn MJ (1990) Eicosanoid biochemistry in cultured glomerular mesangial cells. Methods Enzymol 187: 544–553

    Google Scholar 

  70. Knowles RG, Moncada S (1992) Nitric oxide as signal in blood vessels. Trends Biochem Sci 17: 399–402

    Google Scholar 

  71. Skorecki KL, Rutledge WP, Schrier RW (1992) Acute cyclosporine nephrotoxicity-prototype for a renal membrane signaling disorder. Kidney Int 42: 1–10

    Google Scholar 

  72. Wolf G, Killen PD, Nielson EG (1990) Cyclosporin A stimulates transcription and procollagen secretion in tubulointerstitial fibroblasts and proximal tubular cells. J Am Soc Nephrol 1: 918–922

    Google Scholar 

  73. Conte G, Dal Canton A, Sabbatini M, Napodano P, DeNicola L, Gigliott G, Fuiano G, Testa A, Esposito C, Russo D (1989) Acute cyclosporine renal dysfunction reversed by dopamine infusion in healthy subjects. Kidney Int 36: 1086–1092

    Google Scholar 

  74. Kremer S, Margolis B, Harper P, Skorecki K (1989) Cyclosporine induced alterations in vasopressin signaling in the glomerular mesangial cell. Clin Invest Med 12: 201–206

    Google Scholar 

  75. Kremer S, Harper P, Hegele R, Skorecki K (1988) Bradykinin stimulates a rise in cytosolic calcium in renal glomerular mesangial cells via a pertussis toxin insensitive pathway. Can J Physiol Pharmacol 66: 43–48

    Google Scholar 

  76. Pfeilschifter J, Ruegg UT (1987) Cyclosporin A augments angiotensin II stimulated rise in intracellular free calcium in vascular smooth muscle cells. Biochem J 248: 883–887

    Google Scholar 

  77. Goldberg HJ, Wong PY, Cole EH, Levy GA, Skorecki KL (1989) Dissociation between the immunosuppressive activity of cyclosporine derivatives and their effects on intracellular calcium signaling in mesangial cells. Transplantation 47: 731–733

    Google Scholar 

  78. Stahl RAK, Adler S, Baker PJ, Johnson RJ, Chen YP, Pritzl P, Couser WG (1989) Cyclosporine A inhibits prostaglandin E2 formation by rat mesangial cells in culture. Kidney Int 35: 1161–1167

    Google Scholar 

  79. Kurtz A, Pfeilschifter J, Kuhn K, Koch KM (1987) Cyclosporine A inhibits PGE2 release from vascular smooth muscle cells. Biochem Biophys Res Commun 147: 542–549

    Google Scholar 

  80. Rutledge WP, Levy G, Wong PY, Skorecki K (1990) Structural specificity and biochemical locus for cyclosporine A induced inhibition of prostaglandin production in glomerular mesangial cells in culture (abstract). Clin Res 38: 2775

    Google Scholar 

  81. Stahl RAK, Kudelka S (1986) Chronic cyclosporine A treatment reduces prostaglandin E2 formation in isolated glomeruli and papilla of rat kidneys Clin Nephrol 25: 578–582

    Google Scholar 

  82. Lau DCW, Wong KL, Hwang WS (1987) Cyclosporine toxicity on cultured rat microvascular endothelial cells. Kidney Int 35: 604–613

    Google Scholar 

  83. Perico N, Dadan J, Remuzzi G (1990) Endothelin mediates the renal vasoconstriction induced by cyclosporine in the rat. J Am Soc Nephrol 1: 76–83

    Google Scholar 

  84. Kon V, Sugiura M, Inagami T, Harvie BR, Ichikawa I, Hoover RL (1990) Role of endothelin in cyclosporine-induced glomerular dysfunction. Kidney Int 37: 1487–1491

    Google Scholar 

  85. Bobadilla NA, Tapia E, Franco M, Lopez P, Mendoza S, Garcia-Torres R, Alvarado JA, Herrera-Acosta J (1994) Role of nitric oxide in renal hemodynamic abnormalities of cyclosporin nephrotoxicity. Kidney Int 46: 773–779

    Google Scholar 

  86. Levenson DJ, Simmons CE, Brenner BM (1982) Arachidonic acid metabolism, prostaglandins and the kidney. Am J Med 72: 354–374

    Google Scholar 

  87. Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophillin, cyclosporin A and FKBP-FK506 complexes. Cell 66: 807–815

    Google Scholar 

  88. Wang T, Donahue P, Zervas A (1994) Specific interaction of type I receptors of the TGF-β family with the immunophilin FKBP-12. Science 265: 674–676

    Google Scholar 

  89. Craven PA, DeRubertis FR (1989) Protein kinase C is activated in glomeruli from streptozotocin in diabetic rats: possible mediation by glucose. J Clin Invest 83: 1667–1675

    Google Scholar 

  90. Ballermann BJ, Skorecki KL, Brenner BM (1984) Reduced angiotensin II receptor density in glomeruli isolated from rats with experimental diabetes mellitus. Am J Physiol 247: F110-F116

    Google Scholar 

  91. Mene P, Pugliese G, Pricci F, DiMario U, Cinotti GA, Pugliese F (1993) High glucose inhibits cytosolic calcium signaling in cultured rat mesangial cells. Kidney Int 43: 585–591

    Google Scholar 

  92. Ayo SH, Radnik R, Garoni JA, Troyer DA, Kreisberg JI (1991) High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell cultures. Am J Physiol 261: F571-F577

    Google Scholar 

  93. Williams B, Schrier RW (1993) Glucose-induced protein kinase C activity regulates arachidonic acid release and eicosanoid production by cultured glomerular mesangial cells. J Clin Invest 92: 2889–2896

    Google Scholar 

  94. Margolis BM, Angel J, Kremer S, Skorecki KL (1988) Vasopressin action in the kidney-overview and glomerular actions. In: Cowley AW, Liard J-F, Ausiello DA (eds) Vasopressin: cellular and integrative functions. Raven, New York, pp 97–106

    Google Scholar 

  95. Craven PA, Davidson CM, DeRubertis FR (1990) Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 39: 667–674

    Google Scholar 

  96. Coyne DW, Mordhorst M, Morrison AR (1990) Regulation of eicosanoid biosynthesis by phorbol ester in Madin Darby canine kidney cells. Am J Physiol (Renal) 259: F698-F703

    Google Scholar 

  97. Langley JM, Balfe JW, Selander T, Ray PN, Clarke JTR (1991) Autosomal recessive inheritance of vasopressin-resistant diabetes indipidus. Am J Med Genet 38: 90–94

    Google Scholar 

  98. Niaudet P, Dechaux M, Trivin C, Loirat C, Broyer M (1984) Nephrogenic diabetes insipidus. Adv Nephrol 13: 247–260

    Google Scholar 

  99. Nine VAM, Ans MW, Ouweland VD, Verdijk M, Monnens LAH Van Oost BA (1994) Inheritance of mutations in the V2 receptor gene in thirteen families with nephrogenic diabetes insipidus. Kidney Int 46: 170–176

    Google Scholar 

  100. Skorecki KL, Verkman AS, Jung CY, Ausiello DA (1986) Evidence for vasopressin activation of adenylate cyclase by subunit dissociation. Am J Physiol 250: C115-C123

    Google Scholar 

  101. Skorecki KL, Ausiello DA (1988) Vasopressin receptor-adenylate cyclase interactions: a model for cAMP metabolism in the kidney. In: Cowley AW Jr, Liard J-F, Ausiello DA (eds) Vasopressin: cellular and integrative functions. Raven Press, pp 55–63

  102. Deen PMT, Verdijk MAJ, Knoers NVAM, Wieringa B, Monnens LAH, Os CH van, Oost BA van (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264: 92–95

    Google Scholar 

  103. Goldberg H, Clayman P, Skorecki KL (1988) Mechanism of Li-inhibition of vasopressin sensitive adenyl cyclase in cultured renal epithelial cells. Am J Physiol 255: F995-F1002

    Google Scholar 

  104. Zachary I, Sinnett-Smith J, Rozengurt E (1993) Vasopressin regulation of cell growth in Swiss 3T3 cells. Regul Pept 45: 231–236

    Google Scholar 

  105. Valotton MB, Capponi AM, Johnson EI, Lang U (1990) Mode of action of angiotensin II and vasopressin in their target cells. Horm Res 34: 105–110

    Google Scholar 

  106. Cryer PE (1993) Adrenaline: a physiological metabolic regulatory hormone in humans. Int J Obesity 17: 843–846

    Google Scholar 

  107. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415

    Google Scholar 

  108. Fantl WJ, Johnson DE, Williams LT (1993) Signaling by receptor tyrosine kinases. Annu Rev Biochem 62: 453–481

    Google Scholar 

  109. Springer TA (1990) Adhesion receptors of the immune system. Nature 346: 425–434

    Google Scholar 

  110. Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules and inflammatory injury. FASEB J 8: 504–512

    Google Scholar 

  111. McEver RP (1994) Selectins. Curr Opin 6: 75–84

    Google Scholar 

  112. White MF, Kahn RC (1994) The insulin signaling system. J Biol Chem 269: 1–4

    Google Scholar 

  113. Cronstein BN (1994) Adenosine: an endogenous anti-inflammatory agent. J Appl Physiol 76: 5–13

    Google Scholar 

  114. Au BT, Williams TJ, Collins PD (1994) Zymosan-induced IL-8 release from human neutrophils involves activation of the CD8/CD18 receptor and endogenous platelet activating factor as an autocrine modulator. J Immunol 152: 5411–5419

    Google Scholar 

  115. Durieux ME, Lynch KR (1993) Signalling properties of lysophosphatidic acid. Trends Pharmacol Sci 14: 249–254

    Google Scholar 

  116. Berridge MJ (1994) The biology and medicine of calcium signalling. Mol Cell Endocrinol 98: 119–124

    Google Scholar 

  117. Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB (1985) Type B transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci USA 82: 119–123

    Google Scholar 

  118. Pallen CJ, Tan YH, Guy GR (1992) Protein phosphatase in cell signalling. Curr Opin Cell Biol 4: 1000–1007

    Google Scholar 

  119. Appel RG (1992) Growth regulatory properties of atrial natriuretic factor. Am J Physiol 262: F911-F918

    Google Scholar 

  120. Barnard EA (1992) Receptor classes and the transmitter-gated ion channels. Trends Biochem Sci 17: 368–373

    Google Scholar 

  121. Pouyssegur J, Seuwen K (1992) Transmembrane receptors and intracellular pathways that control cell proliferation. Annu Rev Physiol 54: 195–210

    Google Scholar 

  122. Koesling D, Bohme E, Schultz G (1991) Guanyl cyclases, a growing family of signal-transducing enzymes. FASEB J 13: 2785–2791

    Google Scholar 

  123. Choi E-J, Xia Z, Villacres EC, Storm DR (1993) The regulatory diversity of the mammalian adenyl cyclases. Curr Opin Cell Biol 5: 269–273

    Google Scholar 

  124. Cooper JA, Howell B (1993) The when and how of src regulation. Cell 73: 1051–1054

    Google Scholar 

  125. McCormick F (1993) How receptors turnras on. Nature 363: 15–16

    Google Scholar 

  126. Pawson T, Gish GD (1992) SH2 and SH3 domains: from structure to function. Cell 71: 359–362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hack, N., Schultz, A., Clayman, P. et al. Transmembrane signaling in kidney health and disease. Pediatr Nephrol 9, 514–525 (1995). https://doi.org/10.1007/BF00866743

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00866743

Key words

Navigation