Skip to main content
Log in

A statistical-dynamical downscaling procedure for global climate simulations

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

A statistical-dynamical downscaling procedure for global climate simulations is described. The procedure is based on the assumption that any regional climate is associated with a specific frequency distribution of classified large-scale weather situations. The frequency distributions are derived from multi-year episodes of low resolution global climate simulations. Highly resolved regional distributions of wind and temperature are calculated with a regional model for each class of large-scale weather situation. They are statistically evaluated by weighting them with the according climate-specific frequency. The procedure is exemplarily applied to the Alpine region for a global climate simulation of the present January climate.

List of Symbols

Δλ west-east mesh size in geographic coordinates

Δϕ south-north mesh size in geographic coordinates

N number of large-scale weather classes

n number of regional-scale event classes

p pressure

P probability

Ø large-scale event

ϕ regional-scale event

q v specific humidity

θ potential temperature

u west-east wind component

v south-north wind component

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGL:

above ground level

LT:

local time

UTC:

universal time coordinated

References

  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution.J. Climate 4, 469–485.

    Google Scholar 

  • Boyle, J. S., 1993: Sensitivity of dynamical quantities to horizontal resolution for a climate simulation using the ECMWF (Cycle 33) Model.J. Climate 6, 796–815.

    Google Scholar 

  • Cubasch, U., Hasselmann, K., Höck, H., Maier-Reimer, E., Mikolajewicz, U., Santer, B. D., Sausen, R., 1992: Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model.Climate Dyn.,8, 55–69.

    Google Scholar 

  • Frey-Buness, A., 1993: Ein statistisch-dynamisches Verfahren zur Regionalisierung globaler Klimasimulationen. DLR-FB 93-47, obtainable from DLR, Zentrale Allgemeine Dienste, Versand, D-51140 Köln, ISSN 0939–2963.

  • Giorgi, F., Mearns, L. O., 1991: Approaches to the simulation of regional climate change: A review.Rev. of Geophys. 29, 191–216.

    Google Scholar 

  • Grotch, S. L., MacCracken, M. C., 1991: The use of general circulation models to predict regional climatic change.J. Climate 4, 286–303.

    Google Scholar 

  • Heimann, D., 1986: Estimation of regional surface-layer wind-field characteristics using a three-layer mesoscale model.Beitr. Phys. Atmosph. 59, 518–537.

    Google Scholar 

  • Heimann, D., 1990: Three-dimensional modeling of synthetic cold fronts approaching the Alps.Meteorol. Atmos. Phys. 42, 197–219.

    Google Scholar 

  • Heimann, D., 1992: Three-dimensional modeling of synthetic cold fronts interacting with northern Alpine foehn.Meteorol. Atoms. Phys. 48, 139–163.

    Google Scholar 

  • Heimann, D., 1993: REWIH3D-1.0 Modell- und Programmbeschreibung. Report Nr. 3 des Instituts für Physik der Atmosphäre der Deutschen Forschungsanstalt für Luft- und Raumfahrt (DLR), ISSN 0943-4771.

  • Hewitson, B., 1994: Regional climates in the GISS general circulation model: surface air temperature.J. Climate 7, 283–303.

    Google Scholar 

  • Lilly, D. K., Klemp, J. B., 1979: The effects of the terrain shape on nonlinear hydrostatic mountain waves.J. Fluid. Mech. 95, 241–261.

    Google Scholar 

  • Manier, G., Dietzer, B., 1979: Untersuchung über den Einfluß der Topographie der Erdoberfläche auf den Zusammenhang zwischen den Häufigkeitsverteilungen von Bodenwind und geostrophischem Wind.Meteorol. Rdsch. 32, 35–44.

    Google Scholar 

  • Marinucci, M. R., Giorgi, F., 1992: A 2 × CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model. 1. Present-day seasonal climate simulation.J. Geophys. Res. 97, 9989–10009.

    Google Scholar 

  • Pielke, R. A., 1984:Mesoscale Meteorological Modeling. New York: Academic Press.

    Google Scholar 

  • Physick, W. L., 1988: Review: Mesoscale modelling in complex terrain.Earth Science Reviews 12, 199–235.

    Google Scholar 

  • Roeckner, E., Arpe, K. Bengtsson, L., Brinkop, S., Dümenil, L., Kirk, E., Lunkeit, F., Esch, M., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., Windelband, M., 1992: Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Max-Planck-Institut für Meteorologie, Report No. 93, ISSN 0937–1060.

  • Schlesinger, M. E., Mitchell, J. F. B., 1987: Climate model simulations of the equilibrium climatic response to increased carbon dioxide.Rev. Geophys. 25, 760–798.

    Google Scholar 

  • Stouffer, R. J., Manabe, S., Bryan, K., 1989: Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2.Nature 342, 660–662.

    Article  Google Scholar 

  • Storch, H. von, Zorita, E., Cubasch, U., 1993: Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime.J. Climate 6, 1161–1171. ISSN 0937-1060.

    Google Scholar 

  • Wanner, H., Furger, M., 1990: The Bise — Climatology of a regional wind north of the Alps.Meteorol. Atmos. Phys. 43, 105–115.

    Google Scholar 

  • Wippermann, F., Groß, G., 1981: On the construction of orographically influenced wind roses for given distributions of the large-scale wind.Beitr. Phys. Atmos. 54, 492–501.

    Google Scholar 

  • Zorita, E., Hughes, J. P., Lettemaier, D. P., Storch, H. von, 1993: Stochastic characterization of regional circulation pattern for climate model diagnosis and estimation of local precipitation. Max-Planck-Institut für Meteorologie, Report No. 109, ISSN 0937-1060.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 13 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey-Buness, F., Heimann, D. & Sausen, R. A statistical-dynamical downscaling procedure for global climate simulations. Theor Appl Climatol 50, 117–131 (1995). https://doi.org/10.1007/BF00866111

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00866111

Keywords

Navigation