Skip to main content
Log in

Two photon-induced fluorescence intensity and anisotropy decays of diphenylhexatriene in solvents and lipid bilayers

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We measured the fluorescence intensity and anisotropy decays of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labeled membranes resulting from simultaneous two-photon excitation of fluorescence. Comparison of these two-photon data with the more usual one-photon measurements revealed that DPH displayed identical intensity decays, anisotropy decays, and order parameters for one- and two-photon excitation. While the anisotropy data are numerically distinct, they can be compared by use of the factor 10/7, which accounts for the two-photon versus one-photon photoselection. The increased time 0 anisotropy of DPH can result in increased resolution of complex anisotropy decays. Global analysis of the one- and two-photon data reveals consistency with a single apparent angle between the absorption and the emission oscillators. The global anisotropy analysis also suggests that, except for the photoselection factor, the anisotropy decays are the same for one-and two-photon excitation. This ideal behavior of DPH as a two-photon absorber, and its high two-photon cross section, makes DPH a potential probe for confocal two-photon microscopy and other systems where it is advantageous to use long-wavelength (680- to 760-nm) excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Goodman and R. P. Rava (1984)Acc. Chem. Res. 17, 250–257.

    Google Scholar 

  2. D. M. Friedrich and W. M. McClain (1980)Annu. Rev. Phys. Chem. 31, 559–577.

    Google Scholar 

  3. D. M. Friedrich (1982)J. Chem. Educ. 3, 472–481.

    Google Scholar 

  4. M. J. Wirth, A. Koskelo, and M. J. Sanders (1981)Appl Spectrosc. 35, 14–21.

    Google Scholar 

  5. B. Hudson and B. Kohler (1974)Annu. Rev. Phys. Chem. 25, 437–460.

    Google Scholar 

  6. R. R. Birge (1986)Acc. Chem. Res. 19, 138–146.

    Google Scholar 

  7. M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge (1986)J. Chem. Phys.,84, 3901–3915.

    Google Scholar 

  8. B. E. Anderson, R. D. Jones, A. A. Rehms, P. Ilich, and P. R. Callis (1986)Chem. Phys. Lett. 125, 106–112.

    Google Scholar 

  9. A. A. Rehms and P. R. Callis (1987)Chem. Phys. Lett. 140, 83–89.

    Google Scholar 

  10. R. R. Birge (1983) in D. S. Klinger, (Ed.),Ultrasensitive Laser Spectroscopy, Academic Press, New York, pp. 109–174.

    Google Scholar 

  11. S. M. Kennedy and F. E. Lytle (1986) Anal. Chem.58, 2643–2647.

    Google Scholar 

  12. S.-P. Jiang, S.-H., K.-C. Ruan, L.-K. Liu, Z. Z. Zhang, and Q. Li (1984)Chem. Phys. Lett. 104, 109–111.

    Google Scholar 

  13. S.-P. Jiang (1989)Prog. React. Kinet. 15, 77–92.

    Google Scholar 

  14. J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, E. Danielsen, and M. J. Wirth (1992)J. Phys. Chem. 96, 3000–3006.

    Google Scholar 

  15. W. Denk, J. H. Strickler, and W. W. Webb (1990)Science 248, 73–36.

    Google Scholar 

  16. D. W. Piston, D. R. Sandison, and W. W. Webb (1992)Proc. SPIE 1640, 379–388.

    Google Scholar 

  17. J. R. Lakowicz, I. Gryczynski, E. Danielsen, and J. K. Frisoli (1992)Chem. Phys. Lett. 194, 282–287.

    Google Scholar 

  18. J. R. Lakowicz and I. Gryczynski (1992)Biophys. Chem. 45, 1–6.

    Google Scholar 

  19. J. R. Lakowicz and I. Gryczynski (1992)J. Fluoresc. 2, 117–121.

    Google Scholar 

  20. C. D. Stubbs and B. W. Williams (1992) in J. R. Lakowicz (Ed.)Topics in Fluorescence Spectroscopy, Vol. 3, Plenum Press, New York, pp. 231–271.

    Google Scholar 

  21. L. A. Chen, R. E. Dale, S. Roth, and L. Brand (1977)J. Biol. Chem. 252, 2163–2169.

    Google Scholar 

  22. S. Kawato, K. Kinosita, Jr., and A. Ikegami (1977)Biochemistry 24, 376–383.

    Google Scholar 

  23. F. Jahnig (1979)Proc. Natl. Acad. Sci. 76, 6361–6365.

    Google Scholar 

  24. P. P. Feofilov (1969)Optics Spectrosc. 26, 306–310.

    Google Scholar 

  25. Y. T. Mazurenko (1971)Optics Spectrosc. 28, 413–415.

    Google Scholar 

  26. W. M. McClain (1972)J. Chem. Phys. 57, 2264–2272.

    Google Scholar 

  27. T. W. Scott, K. S. Haber, and A. C. Albrecht (1983)J. Chem. Phys. 78, 150–157.

    Google Scholar 

  28. J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Rev. Sci. Instrum. 57, 2499–2506.

    Google Scholar 

  29. G. Laczko, J. R. Lakowicz, I. Gryczynski, and H. Malak (1990)Rev. Sci. Instrum. 61, 2331–2337.

    Google Scholar 

  30. J. R. Lakowicz, E. Gratton, G. Laczko, H. Cherek, and M. Limkeman (1984)Biophys. J. 46, 463–477.

    Google Scholar 

  31. E. Gratton, J. R. Lakowicz, B. P. Maliwal, H. Cherek, G. Laczko, and M. Limkeman (1984)Biophys. J. 46, 479–486.

    Google Scholar 

  32. J. R. Lakowicz, H. Cherek, and B. P. Maliwal (1985)Biochemistry 24, 376–383.

    Google Scholar 

  33. B. P. Maliwal and J. R. Lakowicz (1986)Biochim. Biophys. Acta 873, 161–172.

    Google Scholar 

  34. G. Weber (1977)J. Chem. Phys. 66, 4081–4091.

    Google Scholar 

  35. J. R. Lakowicz, I. Gryczynski, and E. Danielsen (1992)Chem. Phys. Lett. 191, 47–53.

    Google Scholar 

  36. B. S. Hudson and B. E. Kohler (1972)Chem. Phys. Lett. 14, 299–304.

    Google Scholar 

  37. H. L.-B. Fang, R. J. Thrash, and G. E. Leroi (1978)Chem. Phys. Lett. 57, 59–63.

    Google Scholar 

  38. J. Saltiel, D. F. Sears, Jr., Y.-P. Sun, and J.-O. Choi (1992)J. Am. Chem. Soc. 114, 3607–3612.

    Google Scholar 

  39. F. Mulders, H. van Langen, G. van Ginkel, and Y. K. Levine (1986)Biochim. Biophys. Acta 859, 209–218.

    Google Scholar 

  40. M. Straume and B. J. Litman (1987)Biochemistry 26, 5113–5120.

    Google Scholar 

  41. G. Weber (1978)Acta Phys. Pol. A54, 859–865.

    Google Scholar 

  42. J. R. Lakowicz and F. G. Prendergast (1978)Biophys. J. 24, 213–231.

    Google Scholar 

  43. M. L. Johnson and S. G. Frasier (1985)Methods Enzymol. 117, 301–342.

    Google Scholar 

  44. M. Traume, S. G. Frasier-Cadoret, and M. L. Johnson (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Vol. 2, Plenum Press, New York, pp. 177–240.

    Google Scholar 

  45. J. R. Lakowicz, M. L. Johnson, N. Joshi, I. Gryczynski, and G. Laczko (1986)Chem. Phys. Lett. 131, 343.

    Google Scholar 

  46. J. R. Knutson, D. G. Walbridge, and L. Brand (1982)Biochemistry 21, 4671–4679.

    Google Scholar 

  47. H. Szmacinski, R. Jayaweera, H. Cherek, and J. R. Lakowicz (1987)Biophys. Chem. 27, 233–241.

    Google Scholar 

  48. I. Gryczynski, unpublished observation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakowicz, J.R., Gryczynski, I., Kuśba, J. et al. Two photon-induced fluorescence intensity and anisotropy decays of diphenylhexatriene in solvents and lipid bilayers. J Fluoresc 2, 247–258 (1992). https://doi.org/10.1007/BF00865283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865283

Key Words

Navigation