Skip to main content
Log in

Renal tubular acidosis

  • Practical Pediatric Nephrology
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The term renal tubular acidosis (RTA) is applied to a group of transport defects in the reabsorption of bicarbonate (HCO 3 ), the excretion of hydrogen ions, or both. On clinical and pathophysiological grounds, RTA can be separated into three main types: distal RTA (type 1), proximal RTA (type 2) and hyperkalaemic RTA (type 4). Some patients present combined types of proximal and distal RTA or of hyperkalaemic and distal RTA. Diagnosis of RTA should be suspected when a patient presents a normal plasma anion gap, and hyperchloraemic metabolic acidosis. A normal plasma anion gap (Na+−[Cl+HCO3 ]=8–16 mEq/l) reflects loss of HCO3 from the extracellular fluid via the gastro-intestinal tract or the kidney, dilution of extracellular buffer or administration of hydrochloric acid (HCl) or its precursors. Distinction of RTA from other disorders is greatly facilitated by the study of the urine anion gap (Na++K+−Cl). This index estimates the urinary concentration of ammonium in a patient with hyperchloraemic metabolic acidosis. A negative urine anion gap (Cl≫Na++K+) suggests the presence of gastro-intestinal or renal loss of HCO3 , while a positive urine anion gap (Cl<Na++K+) is indicative of a distal acidification defect. Determination of plasma potassium, of urine pH at low plasma HCO3 concentration, and of urineP co 2 and fractional excretion of HCO3 at normal plasma HCO3 concentration permits the differentiation between the various types of RTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warnock DG (1988) Uremic acidosis. Kidney Int 34: 278–287

    PubMed  Google Scholar 

  2. Paillard M, Bichara M (1989) Recent advances in the cellular mechanisms and hormonal regulation of urine acidification. Adv Nephrol 18:141–168

    Google Scholar 

  3. Aronson PS (1983) Mechanisms of active H+ secretion in the proximal tubule. Am J Physiol 245:F647-F659

    PubMed  Google Scholar 

  4. Preisig PA, Alpern RJ (1989) Basolateral membrane H−OH−HCO3 transport in the proximal tubule. Am J Physiol 256:F751-F765

    PubMed  Google Scholar 

  5. Wistrand PJ, Knuuttila KG (1989) Renal membrane-bound carbonic anhydrase. Purification and properties. Kidney Int 35:851–859

    PubMed  Google Scholar 

  6. Cogan MG, Alpern RJ (1984) Regulation of proximal bicarbonate reabsorption. Am J Physiol 247:F387-F395

    PubMed  Google Scholar 

  7. Maddox DA, Deen WM, Gennari FJ (1987) Control of bicarbonate reabsorption in the proximal convoluted tubule. Semin Nephrol 7: 72–81

    PubMed  Google Scholar 

  8. Simpson DP (1971) Control of hydrogen ion homeostasis and renal acidosis. Medicine 50:503–541

    PubMed  Google Scholar 

  9. Good DW, Knepper MA (1985) Ammonia transport in the mammalian kidney. Am J Physiol 248:F459-F471

    PubMed  Google Scholar 

  10. Lee HL, Simon EE (1987) Roles and mechanisms of urinary buffer excretion. Am J Physiol 253:F595-F605

    PubMed  Google Scholar 

  11. Chan JCM (1980) Acid-base and mineral disorders in children: a review. Int J Pediatr Nephrol 1:54–63

    PubMed  Google Scholar 

  12. Madsen KM, Tisher CC (1986) Structural-function relationship along the distal nephron. Am J Physiol 250:F1-F5

    Google Scholar 

  13. Stone DK, Xie XS (1988) Proton translocating ATPases: issues in structure and function. Kidney Int 33:767–774

    PubMed  Google Scholar 

  14. Laski M, Kurtzman NA (1983) Characterization of acidification in the cortical and medullary collecting tubules of the rabbit. J Clin Invest 72:2050–2059

    PubMed  Google Scholar 

  15. Wagner S, Vogel R, Lietzke R, Koob R, Drenkhahn D (1987) Immunochemical characterization of a band 3-like anion exchanger in collceting duct of human kidney. Am J Physiol 253:F213-F221

    PubMed  Google Scholar 

  16. Schuster VL (1989) Control mechanisms for bicarbonate secretion. Am J Kidney Dis 13:348–352

    PubMed  Google Scholar 

  17. Stone DK, Seldin DW, Jacobson HR (1983) Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent effect. J Clin Invest 72:77–83

    PubMed  Google Scholar 

  18. Hays S, Kokko JP, Jacobson HR (1986) Hormonal regulation of proton secretion in rabbit medullary collecting duct. J Clin Invest 78: 1279–1286

    PubMed  Google Scholar 

  19. Selvaggio AM, Schwartz JH, Bengele HH, Gordon FD, Alexander EA (1988) Mechanisms of H+ secretion of inner medullary collecting duct. Am J Physiol 254:F391-F400

    PubMed  Google Scholar 

  20. Madias NE, Zelman SJ (1986) The renal response to chronic mineral acid feeding. Are-examination of the role of systemic pH. Kidney Int 29:667–674

    PubMed  Google Scholar 

  21. Batlle DC (1986) Segmental characterization of defects in collecting tubule acidification. Kidney Int 30:546–554

    PubMed  Google Scholar 

  22. Marver D, Kokko JP (1983) Renal target sites and mechanism of action of aldosterone. Miner Electrolyte Metab 9:1–18

    PubMed  Google Scholar 

  23. Pichette C, Tam SC, Chen CB, Goldstein M, Stinebaugh B, Halperin ML (1982) Effect of potassium on distal hydrogen ion secretion in the dog. J Lab Clin Med 100:374–384

    PubMed  Google Scholar 

  24. Kornandakieti C, Tannen RL (1984) Hydrogen ion secretion by the distal nephron in the rat: effect of potassium. J Lab Clin Med 104: 293–303

    PubMed  Google Scholar 

  25. Lemieux G, Vinay P, Gougoux A (1982) Renal ammoniagenesis. Adv Nephrol 11:371–397

    Google Scholar 

  26. Rodríguez-Soriano J (1990) Renal tubular acidosis. In: Edelmann CM Jr, Spitzer A, Travis LB, Meadow SR (eds) Pediatric kidney disease, 2nd edn. Little, Brown, Boston (in press)

    Google Scholar 

  27. Edelmann CM Jr (1985) Isolated proximal (type 2) renal tubular acidosis. In: Gonick HC, Buckalew VM Jr (eds) Renal tubular disorders. Dekker, New York, pp 261–279

    Google Scholar 

  28. Morris RC Jr, Sebastian A (1983) Renal tubular acidosis and Fanconi syndrome. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) Metabolic basis of inherited disease, 5th edn. McGraw-Hill, New York, pp 1808–1843

    Google Scholar 

  29. Brenner RJ, Spring DB, Sebastian A, McSherry E, Gennant HK, Palubinskas AJ, Morris RC Jr (1982) Incidence of radiographically evident bone disease, nephrocalcinosis and nephrolithiasis in various types of renal tubular acidosis. N Engl J Med 307:217–221

    PubMed  Google Scholar 

  30. DuBose TD Jr, Cafflish CR (1985) Validation of the difference in urine to blood carbon dioxide tension during experimental models of distal renal tubular acidosis. J Clin Invest 75:1116–1123

    PubMed  Google Scholar 

  31. Batlle DC, Sehy JT, Roseman MK, Arruda JAL, Kurtzman NA (1981) Clinical and pathophysiological spectrum of acquired distal renal tubular acidosis. Kidney Int 20:389–396

    PubMed  Google Scholar 

  32. Rocher LL, Tannen RL (1986) The clinical spectrum of renal tubular acidosis. Ann. Rev Med 37:319–331

    PubMed  Google Scholar 

  33. Batlle DC, Grupp M, Gaviria M, Kurtzman NA (1982) Distal renal tubular acidosis with intact capacity to lower urinary pH. Am J Med 72:751–758

    PubMed  Google Scholar 

  34. Clardy CW, Varade WC, Pan C, McEnery PT, Leahy AE, Strife CF (1989) The urine to blood Pco 2 gradient (U-BP co 2) distinguishes rate dependent distal renal tubular acidosis (dRTA) from classical dRTA in children. Abstracts VIII Congress International Pediatric Nephrology Association, Toronto, August 27–September 1, 1989. Pediatr Nephrol 3:C232 p 20.003

    Google Scholar 

  35. Rodríguez-Soriano J, Vallo A, Castillo G, Oliveros R (1985) Pathophysiology of primary distal renal tubular acidosis. Int J Pediatr Nephrol 6:71–78

    PubMed  Google Scholar 

  36. McSherry E (1981) Renal tubular acidosis in childhood. Kidney Int 20:799–809

    PubMed  Google Scholar 

  37. Santos F, Chan JCM (1986) Renal tubular acidosis in children. Diagnosis, treatment and prognosis. Am J Nephrol 6:289–295

    PubMed  Google Scholar 

  38. Wrong OM, Feest TG (1980) The natural history of distal renal tubular acidosis. Contrib Nephrol 21:137–144

    PubMed  Google Scholar 

  39. Kurtzman NA (1983) Acquired distal renal tubular acidosis. Kidney Int 24:807–819

    PubMed  Google Scholar 

  40. Caruana RJ, Buckalew VM Jr (1988) The syndrome of distal (type 1) renal tubular acidosis. Clinical and laboratory findings in 58 cases. Medicine 67:84–99

    PubMed  Google Scholar 

  41. McSherry E, Sebastian A, Morris RC Jr (1972) Renal tubular acidosis in infants: the several kinds, including bicarbonate-wasting renal tubular acidosis. J Clin Invest 51:499–514

    PubMed  Google Scholar 

  42. Rodríguez-Soriano J, Vallo A, García-Fuentes M (1975) Distal renal tubular acidosis in infancy: a bicarbonate-wasting state J Pediatr 86: 524–532

    PubMed  Google Scholar 

  43. Rodríguez-Soriano J, Vallo A, Castillo G, Oliveros R (1982) Natural history of primary distal renal tubular acidosis treated since infancy. J Pediatr 101:669–676

    PubMed  Google Scholar 

  44. Batlle DC (1981) Hyperkalemic hyperchloremic metabolic acidosis associated with selective aldosterone deficiency and distal renal tubular acidosis. Semin Nephrol 1:260–274

    Google Scholar 

  45. DuBose TD Jr, Cafflish CR (1988) Effect of selective aldosterone deficiency on acidification in nephron segments of rat inner medulla. J Clin Invest 82:1624–1632

    PubMed  Google Scholar 

  46. Rodríguez-Soriano J, Vallo A (1988) Renal tubular hyperkalaemia in childhood. Pediatr Nephrol 2:498–509

    PubMed  Google Scholar 

  47. Morris RC JR, Sebastian A, McSherry E (1972) Renal acidosis. Kidney Int 1:322–340

    PubMed  Google Scholar 

  48. Batlle DC, Chan YL (1989) Effect ofl-arginine on renal tubular bicarbonate reabsorption in the rat kidney. Miner Electrolyte Metab 15:187–194

    PubMed  Google Scholar 

  49. Halperin ML, Richardson RMA, Bear RA, Magner PO, Kamel K, Ethier J (1988) Urine ammonium: the key to the diagnosis of distal renal tubular acidosis. Nephron 50: 1–4

    PubMed  Google Scholar 

  50. Batlle DC, VanRiotte A, Schlueter W (1987) Urinary sodium in the evaluation of hyperchloremic metabolic acidosis. N Engl J Med 316: 140–144

    PubMed  Google Scholar 

  51. Goldstein MB, Bear R, Richardson RMA, Mardsen PA, Halperin ML (1986) The urine anion gap: a clinically useful index of acid excretion. Am J Med Sci 292: 198–202

    PubMed  Google Scholar 

  52. Batlle DC, Hizon M, Cohen E, Gutterman C, Grupta R (1988) The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med 318: 594–599

    PubMed  Google Scholar 

  53. DuBose TD Jr (1982) Hydrogen ion secretion by the collecting duct is a determinant of the urine to blood Pco 2 gradient in alkaline urine. J Clin Invest 69:145–156

    PubMed  Google Scholar 

  54. Vallo A, Rodríguez-Soriano J (1984) Oral phosphate loading test for the assessment of distal urinary acidification in children. Miner Electrolyte Metab 10:387–390

    PubMed  Google Scholar 

  55. Emmett M, Narine RG (1977) Clinical use of the anion gap. Medicine 56:38–54

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Soriano, J., Vallo, A. Renal tubular acidosis. Pediatr Nephrol 4, 268–275 (1990). https://doi.org/10.1007/BF00857675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00857675

Key words

Navigation