Skip to main content
Log in

The effect of vasopressin on the cytoskeleton of the epithelial cell

  • Concentrating Mechanism
  • Review Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Vasopressin (AVP) promotes the fusion of vesicles containing water channels with the apical membrane of receptor cells in the amphibian bladder and mammalian kidney. Fusion is accompanied by depolymerization of the actin cytoskeleton. In this review, we present the evidence for actin depolymerization by AVP in the whole cell, and the application of confocal microscopy and immunogold electron microscopy in localizing depolymerization to the apical region of the receptor cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orloff J, Handler JS (1962) The similarity of effects of vasopressin, adenosine 3′, 5′-phosphate (cyclic AMP) and theophylline on the toad bladder. J Clin Invest 41: 702–709

    Google Scholar 

  2. Hays RM (1991) Cell biology of vasopressin. In: Brenner BM, Rector FC (eds) The kidney. Saunders, Philadelphia, pp 424–444

    Google Scholar 

  3. Breyer MD (1991) Regulation of water and salt transport in collecting duct through calcium dependent signaling mechanisms. Am J Physiol 260: F1-F11

    Google Scholar 

  4. Hays RM (1990) Water transport in epithelia. In: Kinne R, Kinne-Saffran E (eds) Comparative physiology: basic principles in transport. Karger, Basel, pp 1–30

    Google Scholar 

  5. Bichet DG, Razi M, Lonergan M, Arthus MF, Papukna V, Kortas C, Barjon JN (1988) Hemodynamic and coagulation responses to 1-desamino [8-D-arginine] vasopressin in patients with congenital nephrogenic diabetes insipidus. N Engl J Med 318: 881–887

    Google Scholar 

  6. Knoers N, Ouweland A, Fahrenholz F, Monnens L, Oost B (1993) Progress in the approach to elucidate the genetic defect in nephrogenic diabetes insipidus. Pediatr Nephrol 7: 685–688

    Google Scholar 

  7. Schlondorff D, Weber H (1976) Cyclic nucleotide metabolism in compensatory renal hypertrophy and neonatal kidney growth. Proc Natl Acad Sci USA 73: 524

    Google Scholar 

  8. Imbert-Teboul M, Chabardes D, Clique A, Montegut M, Norel F (1984) Ontogenesis of hormone-dependent adenylate cyclase in isolated rat nephron segments. Am J Physiol 247: F316-F325

    Google Scholar 

  9. Hays RM, Franki N, Ding G (1987) Effects of antidiuretic hormone on the collecting duct. Kidney Int 31: 530–537

    Google Scholar 

  10. Chevalier J, Bourguet J, Hugon JS (1974) Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res 152: 129–140

    Google Scholar 

  11. Wade JB (1985) Membrane structural studies of the action of vasopressin. Fed Proc 44: 2687–2692

    Google Scholar 

  12. Muller J, Kachadorian WA, DiScala VA (1980) Evidence that ADH-stimulated intramembranous particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J Cell Biol 85: 83–95

    Google Scholar 

  13. Hays RM (1983) Alteration of luminal membrane structure by antidiuretic hormone. Am J Physiol 245: C289-C296

    Google Scholar 

  14. Humbert F, Montesano R, Grosso A, DeSousa RC, Orci L (1977) Particle aggregates in plasma and intracellular membranes of toad bladder (granular cell). Experientia 33: 1364–1367

    Google Scholar 

  15. Masur SK, Cooper S, Rubin MS (1984) Effect of an osmotic gradient on antidiuretic hormone induced endocytosis and hydroosmosis in the toad urinary bladder. Am J Physiol 247: F370-F379

    Google Scholar 

  16. Ding G, Franki N, Hays RM (1985) Evidence for cycling of aggregate-containing tubules in toad urinary bladder. Biol Cell 55: 213–218

    Google Scholar 

  17. Harris HW Jr, Wade JB, Handler JS (1986) Transepithelial water flow regulates apical membrane retrieval in ADH-stimulated toad urinary bladder. J Clin Invest 78: 703–712

    Google Scholar 

  18. Coleman RA, Harris HW Jr, Wade JB (1987) Visualization of endocytosed markers in freeze-fracture studies of toad urinary bladder. J Histochem Cytochem 35: 1405–1414

    Google Scholar 

  19. Lencer WI, Verkman AS, Arnaout MA, Ausiello DA, Brown D (1990) Endocytic vesicles from renal papilla which retrieve the vasopressin-sensitive water channels do not contain a functional H+ ATPase. J Cell Biol 111: 379–389

    Google Scholar 

  20. Ding G, Franki N, Bourguet J, Hays RM (1988) The role of vesicular transport in ADH-stimulated aggregate delivery. Am J Physiol 255: C641-C652

    Google Scholar 

  21. Harmanci MC, Stern P, Kachadorian WA, Valtin H, DiScala VA (1980) Vasopressin and collecting duct intramembranous particle clusters: a dose-response relationship. Am J Physiol 239: F560-F564

    Google Scholar 

  22. Verkman AS, Lencer WI, Brown D, Ausiello DA (1988) Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature 333: 268–269

    Google Scholar 

  23. Siga E, Horster MF (1991) Regulation of osmotic water permeability during differentiation of inner medullary collecing duct. Am J Physiol 260: F710-F716

    Google Scholar 

  24. Burgoyne RD, Cheek TR (1987) Reorganization of peripheral actin filaments as a prelude to exocytosis. Biosci Rep 7: 281–288

    Google Scholar 

  25. Koffer A, Tatham PER, Gomperts BP (1990) Changes in the state of actin during the exocytotic reaction of permeabilized rat mast cells. J Cell Biol 111: 919–927

    Google Scholar 

  26. Perrin D, Moller K, Hanke K, Soling H-D (1992) cAMP and Ca2+-mediated secretion in parotid acinar cells is associated with reversible changes in the organization of the cytoskeleton. J Cell Biol 116: 127–134

    Google Scholar 

  27. Orci L, Gabbay KH, Malaisse WJ (1972) Pancreatic beta-cell web: its possible role in insulin secretion. Science 175: 1128–1130

    Google Scholar 

  28. Goodman SR, Krebs KE, Whitfield CF, Riederer BM, Zagor IS (1988) Spectrin and related molecules. CRC Crit Rev Biochem 23: 171–234

    Google Scholar 

  29. Condeelis J, Hall AL (1991) Measurement of actin polymerization and cross-linking in agonist-stimulated cells. Methods Enzymol 196: 487–496

    Google Scholar 

  30. Ding G, Franki N, Condeelis J, Hays RM (1991) Vasopressin depolymerizes F-actin in the toad bladder epithelial cell. Am J Physiol 260: C9-C16

    Google Scholar 

  31. Cheek TR, Bourgoyne RD (1986) Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS Lett 207: 110–114

    Google Scholar 

  32. Simon H, Gao Y, Franki N, Hays RM (1992) Vasopressin (AVP) depolymerizes apical actin in rat inner medullary collecting duct (IMCD) Am J Physiol, in press

  33. Inoue S (1989) Foundations in confocal scanned imaging in light microscopy. In: Pawley J (ed) Handbook of biological confocal microscopy. IMR Press, Madison, pp 1–13

    Google Scholar 

  34. Holmgren K, Magnusson KE, Franki N, Hays RM (1992) ADH-induced depolymerization of F-actin in the toad bladder granular cell: a confocal microscope study. Am J Physiol 262: C672-C677

    Google Scholar 

  35. Gao Y, Franki N, Macaluso F, Hays RM (1992) Vasopressin decreases immunogold labeling of apical actin in the toad bladder granular cell. Am J Physiol 263: C908-C912

    Google Scholar 

  36. Franki N, Ding G, Gao Y, Hays RM (1992) The effect of cytochalasin D on the actin cytoskeleton of the toad bladder epithelial cell. Am J Physiol 263: C995-C1000

    Google Scholar 

  37. Taylor A, Mamelak M, Gelbetz H, Maffly R (1978) Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. I. Functional studies on the effects of antimitotic agents on the response to vasopressin. J Membr Biol 40: 213–235

    Google Scholar 

  38. Sheetz MP (1987) What are the functions of kinesin? Bioessays 7: 165–168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hays, R.M., Condeelis, J., Gao, Y. et al. The effect of vasopressin on the cytoskeleton of the epithelial cell. Pediatr Nephrol 7, 672–679 (1993). https://doi.org/10.1007/BF00852577

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00852577

Key words

Navigation