Skip to main content
Log in

An update on diagnostic methods in the investigation of diseases of the thyroid

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Iodine deficiency and iodine-deficiency disorders continue to be problems in several parts of Europe, requiring further improvements in the techniques employed in thyroid diagnosis, and particularly in the early diagnosis and risk assessment of autonomously functioning thyroid tissue. For the latter purpose, scintigraphy with technetium-99m pertechnetate under exogenous or endogenous thyroid-stimulating hormone (TSH) suppression provides the best results. Significant methodological improvements in laboratory tests have resulted from the application of new luminescent techniques and gene technology to thyroid function tests. Especially TSH measurement using second- or third-generation assays ensures diagnostic accuracy, so that the thyrotropin-releasing hormone (TRH) test is now almost always unnecessary. The differentiation of blocking and stimulating TSH receptor antibodies is relevant when discrepant results are obtained with respect to thyroid function. Determination of glycosaminoglycans in urine may become a helpful tool in the follow-up of endocrine ophthalmopathy. Some new imaging agents have recently been applied in the scintigraphy of thyroid diseases, such as octreotide, or in thyroid diagnosis, such as fluorodeoxyglucose. Both improve the detectability of metastases of thyroid cancer, especially if the radioiodine scan is negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delange F, Bürgi H. Iodine deficiency disorders in Europe.Bull WHO 1989; 67: 317–326.

    Google Scholar 

  2. Gutekunst R, Scriba PC. Goiter and iodine deficiency in Europe. The European Thyroid Association Report.J Endocrinol Invest 1989; 12: 209–220.

    Google Scholar 

  3. Delange F, Dunn JT, Glinoer D.Iodine deficiency in Europe. A continuing concern. New York: Plenum Press, 1993.

    Google Scholar 

  4. Emrich D, Karkavitsas N, Facorro U, et al. Influence of increasing iodine intake on thyroid function in euthyroid and hyperthyroid states.J Clin Endocrinol Metab 1982; 54: 1236–1241.

    Google Scholar 

  5. Bähre M, Hilgers R, Lindemann C, Emrich D. Physiological aspects of the thyroid trapping function and its suppression in iodine deficiency using99mTc-pertechnetate.Acta Endocrinol (Copenh) 1987; 115: 175–182.

    Google Scholar 

  6. Spencer CA, Schwarzbein D, Guttler RB, LoPresti JS, Nicoloff JT. TRH stimulation test response employing third and fourth generation assays.J Clin Endocrinol Metab 1993; 76: 494–498.

    Google Scholar 

  7. Emrich D, Erlenmaier U, Pohl M, Luig H. Determination of the autonomously functioning volume to the thyroid.Eur J Nucl Med 1993; 20: 410–414.

    Google Scholar 

  8. Reinhardt M, Emrich D, Krause T, et al. Improved dose concept for radioiodine therapy of multifocal and disseminated functional thyroid autonomy.Eur J Endocrinol 1995; 132: 550–556.

    Google Scholar 

  9. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with (111In-DTPA-d-Phe1) and (123I-Tyr3)-octreotide: the Rotterdam experience with more than 1000 patients.Eur J Nucl Med 1993; 20: 716–732.

    Google Scholar 

  10. Feine U, Lietzenmayer R, Hanke JP, Wöhrle H, Müller-Schauenburg W.18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of18FDG and131I.Nucl Med 1995; 43: 127–134.

    Google Scholar 

  11. Spencer CA, Lopresti JS, Patel A, et al. Applications of a new chemiluminometric thyrotropin assay to subnormal measurement.J Clin Endocrinol Metab 1990; 70: 453–460.

    Google Scholar 

  12. Hay ID, Bayer MF, Kaplan MM, et al. American Thyroid Association assessment of current free thyroid hormone and thyrotropin measurements and guidelines for future clinical assays.Clin Chem 1991; 37: 2002–2008.

    Google Scholar 

  13. Ross DS, Daniels GH, Gouveia D. The use and limitations of chemiluminescent thyrotropin assay as a single thyroid function test in an out-patient endocrine clinic.J Clin Endocrinol Metab 1989; 69: 684–688.

    Google Scholar 

  14. Faber J, Gam A, Siedersbaek-Nielsen K. Improved sensitivity of serum thyrotropin measurements. Studies on serum sex hormone-binding globulin in patients with reduced serum thyrotropin.Acta Endocrinol (Copenh) 1990; 123: 535–540.

    Google Scholar 

  15. Franklyn JA, Black G, Betteridge J, Sheppard MC. Comparison of second and third generation methods for measurement of serum thyrotropin in patients with overt hyperthyroidism, patients receiving thyroxine therapy, and those with non-thyroidal illness.J Clin Endocrinol Metab 1994; 78: 1368–1371.

    Google Scholar 

  16. Meinhold H, Altmann R, Bogner U, Finke R, Schleusener H. Evaluation of various immunometric TSH assays.Exp Clin Endocrinol 1994; 102: 23–26.

    Google Scholar 

  17. Duotas L, Grab BM, Dominguez-Munoz JE, et al. Evaluation of thyrotropin secretion before and after TRH by third generation chemiluminescent assay.Horm Metab Res 1993; 25: 430–433.

    Google Scholar 

  18. Reinhardt M, Schiimichen C, Schächtele S, Zimmerlin M, Moser E. Assessment of basal and stimulated TSH in the diagnosis of overt and subclinical hyperthyroidism.Nucl Med 1995; 34: 61–65.

    Google Scholar 

  19. Biersack HJ, Hotze A. The clinician and the thyroid.Eur J Nucl Med 1991; 18: 761–778.

    Google Scholar 

  20. Elkins R, Jackson T, Sinha A, Edwards P. Principles of free hormone measurement.J Endocrinol Invest 1986; 9 Suppl 4: 3–15.

    Google Scholar 

  21. Kaptein EM. Clinical application of free thyroxine determinations. In: Klee GC, ed.Pathophysiology of thyroid disease. Clinics in laboratory medicine, vol 13. Philadelphia: W.B. Saunders; 1993: 653–672.

    Google Scholar 

  22. Parmentier M, Libert F, Maenhout C, et al. Molecular cloning of the thyrotropin receptor.Science 1989; 246: 1620–1622.

    Google Scholar 

  23. Smith BR, McLachlan SM, Furmaniak J. Autoantibodies to the thyrotropin receptor.Endocr Rev 1988; 9: 106–121.

    Google Scholar 

  24. Ludgate M, Vassart G. The molecular genetics of three thyroid autoantigens.Autoimmunity 1990; 7: 201–211.

    Google Scholar 

  25. Meier CA, Bravermann LE, Ebner SA, et al. Diagnostic use of recombinant human thyrotropin in patients with thyroid carcinoma (phaseI/II study).J Clin Endocrinol Metab 1994; 78: 188–196.

    Google Scholar 

  26. Glinoer D, Etienne-Decerf J, Schrooven M, et al. Beneficial effects of intensive plasma exchange followed by immunosuppressive therapy in severe Graves' ophthalmopathy.Acta Endocrinol (Copenh) 1986; 111: 30–38.

    Google Scholar 

  27. Kahaly G, Schuler M, Sewell AC, et al. Urinary glucosaminoglycans in Graves' ophthalmopathy.Clin Endocrinol 1990; 33: 35–44.

    Google Scholar 

  28. Chang TC, Yao WC, Chang CC. Octreotide and urinary glycosaminoglycans in Graves' disease.Br Med J 1992; 304: 1444.

    Google Scholar 

  29. van der Gaag R, Schmidt ED, Koorneef L. Retrobulbar histology and immunohistochemistry in endocrine ophthalmology. In: Kahaly G, ed.Endocrine ophthalmopathy. Molecular, immunological and clinical aspects. Basel: Karger; 1993: 1–10.

    Google Scholar 

  30. Dunn IT. Iodine deficiency — the next target for elimination? [Editorial].N Engl J Med 1992; 326: 267–268.

    Google Scholar 

  31. Dunn JT, Crutchfield HE, Gutekunst R, Dunn AD. Two simple methods for measuring iodine in urine.Thyroid 1993; 3: 119–123.

    Google Scholar 

  32. Lorenz-Wawschinek O, Tiran B, Eber O, Langsteger W. Photometric determination of iodine in urine.Exp Clin Endocrinol 1994; 2: 57–58.

    Google Scholar 

  33. Rendl J, Seybold S, Börner W. Urinary iodide determination by paired-ion reverse-phase HPLC with electrochemical detection.Clin Chem 1994; 40: 908–913.

    Google Scholar 

  34. Regalbuto C, Gullo D, Vigneri R, Pezzino U. Measurement of iodine before131I in thyroid cancer.Lancet 1994; 344: 1501–1502.

    Google Scholar 

  35. Joseph K, Mahlstedt J, Gonnermann R, Herbert K, Welcke U. Early recognition and evaluation of the risk of hyperthyroidism in thyroid autonomy in an endemic goiter area.J Mol Med 1980; 4: 21–37.

    Google Scholar 

  36. Becker W, Börner W, Rendl J. Is TSH-screening useful in confirming or excluding functional thyroid autonomy?Nucl Med 1992; 31: 132–136.

    Google Scholar 

  37. Bähre M, Hilgers R, Lindemann C, Emrich D. Thyroid autonomy: sensitive detection in vivo and estimation of its functional relevance using quantified high-resolution scintigraphy.Acta Endocrinol (Copenh) 1988; 117: 145–153.

    Google Scholar 

  38. Ziegler R, Pickardt CR, Willig RP.Rationelle Diagnostik in der Endokrinologie. Stuttgart: Thieme; 1993: 50–52.

    Google Scholar 

  39. Gutekunst R, Becker W, Hermann R, Olbricht T, Pfannenstiel P. Ultraschalldiagnostik der Schilddrüse.Dtsch Med Wochenschr 1988; 113: 1109–1112.

    Google Scholar 

  40. Brunn J, Block U, Ruf G, et al.Volumetrie der Schilddrüsen-lappen mittels Real-Time-Sonographie.Dtsch Med Wochenschr 1981; 106: 1338–1340.

    Google Scholar 

  41. Gutekunst R, Smolarek H, Hasenpusch U, et al. Goiter epidemiology: thyroid volume, iodine excretion, thyroglobulin and thyrotropin in Germany and Sweden.Acta Endocrinol (Copenh) 1986; 112: 494–501.

    Google Scholar 

  42. Müller HW, Schröder S, Schneider C, Seifert G. Sonographic tissue characterisation in thyroid gland diagnosis — a correlation between sonography and histology.Klin Wochenschr 1985; 63: 706–710.

    Google Scholar 

  43. Becker W, Frank R, Bőrner W. Importance of a quantitative grey scale analysis of the sonogram in "diffuse" thyroid diseases.Fortschr Röntgenstr 1989; 150: 66–71.

    Google Scholar 

  44. Lowhagen J, Williams JS, Lindell G, Sunblad R, Granbery PO. Aspiration biopsy cytology and diagnosis of thyroid cancer.World J Surg 1981; 6: 61–73.

    Google Scholar 

  45. La Rosa GL, Belfiore A, Giuffrida D, et al. Evaluation of the fine needle aspiration biopsy in the preoperative selection of cold thyroid nodules.Cancer 1991; 67: 2137–2141.

    Google Scholar 

  46. Hussain ST, Beeby I, Missan A, Buxton-Thomas MS. Use of fine needle aspiration cytology in the management of the solitary cold thyroid nodule.Nucl Med Commun 1993; 14: 335–338.

    Google Scholar 

  47. Gharib H. Fine-needle aspiration biopsy of thyroid nodules: advantages, limitations, and effect.Mayo Clin Proc 1994; 69: 44–49.

    Google Scholar 

  48. Clarks KJ, Cronan JJ, Scola FH. Color Doppler sonography: anatomic and physiological assessment of the thyroid.J Clin Ultrasound 1995; 23: 215–223.

    Google Scholar 

  49. Shimamoto K, Endo T, Ishigashi T, Sakumo S, Makono N. Thyroid nodules: evaluation with color Doppler ultrasonography.J Ultrasound Med 1993; 12: 673–678.

    Google Scholar 

  50. Stern WD, Laniado M, Vogl W, et al. The color-coded duplex sonography and contrast-enhanced magnetic resonance tomography.Röfo 1994; 160: 3–10.

    Google Scholar 

  51. Bähre M, Luig H, Emrich D, et al. Improved quality and information in thyroid scintigraphy.Eur J Nucl Med 1985; 11: 194–197.

    Google Scholar 

  52. Fragu P, Bazin JP, Di Paola R, Tubiana M. Early kinetics of the human thyroid trap estimation with99mTc and131I.Eur J Nucl Med 1982; 7: 339–344.

    Google Scholar 

  53. Marinelli LD, Quinby EH, Hine GJ. Dosage determination with radioactive isotopes. Practical considerations in therapy and protection.Am J Roentgenol 1948; 59: 260–281.

    Google Scholar 

  54. Miller JM, Horn RC, Block MA. The autonomous functioning thyroid nodule in the evolution of nodular goiter.J Clin Endocrinol 1967; 27: 1264–1274.

    Google Scholar 

  55. Diaz M, Hahn K, Kahaly G. Somatostatin receptor scintigraphy in Graves' disease (ophthalmopathy).Exp Clin Endocrinol 1994; 102 Suppl 3: 23–27.

    Google Scholar 

  56. Reiners C. Imaging methods for medullary thyroid cancer.Recent Res Cancer Res 1992; 125: 126–145.

    Google Scholar 

  57. Joensuu H, Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-l8-fluorodeoxyglucose.J Nucl Med 1987; 28:910–914.

    Google Scholar 

  58. Sisson JC, Ackermann RJ, Meyer MA, Wahl RL, Uptake of 18-fluoro-2-deoxy-d-glucose by thyroid cancer: implications for diagnosis and therapy.J Clin Endocrinol Metab 1993; 77: 1090–1094.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhardt, M.J., Moser, E. An update on diagnostic methods in the investigation of diseases of the thyroid. Eur J Nucl Med 23, 587–594 (1996). https://doi.org/10.1007/BF00833398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00833398

Key words

Navigation