Skip to main content
Log in

Viscosity of monatomic gases at temperatures up to 5000–6000°K

  • Published:
Journal of engineering physics Aims and scope

Abstract

On the basis of analysis of experimental data on the thermal conductivity of monatomic gases at high temperatures and the use of relations from the kineticmolecular theory, theoretical equations are obtained for the viscosity of the gases up to 5000–6000°K at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. M. Trautz and R. Zink, “Die Reibung, Warmeleitung und Diffusion in Grasmischungen. Grasreibung bei hoheren Temperaturen,” Ann. Phys.,20, 137–334 (1945).

    Google Scholar 

  2. V. Vasilesco, “Recherches experimentales sur la viscosite des gas aux temperatures elevees,” Ann. Phys.,20, 137–334 (1945).

    Google Scholar 

  3. C. F. Bonilla, S. J. Wang, and H. Weiner, “Viscosity of steam heavy-water vapor and argon at atmospheric pressure up to high temperatures,” Trans. ASME,78, No. 6, 1285–1289 (1956).

    Google Scholar 

  4. D. G. Clifton, “Measurements of the viscosity of krypton,” J. Chem. Phys.,38, No. 5, 1123–1131 (1963).

    Google Scholar 

  5. J. Kestin and J. H. Whitelaw, “A relative determination of the viscosity of several gases by the oscillating disk method,” Physica,29, No. 4, 335–356 (1963).

    Google Scholar 

  6. M. Rigby and E. B. Smith, “Viscosities of the inert gases,” Trans. Faraday Soc.,62, No. 517, 54–58 (1966).

    Google Scholar 

  7. R. Dipippo and J. Kestin, “The viscosity of seven gases up to 400°C,” in: Proceedings of the Fourth Symposium on Thermophysical Properties, New York (1968), pp. 304–313.

  8. H. I. M. Hanley and G. E. Childs, “Discrepancies between viscosity data for simple gases,” Science,159, No. 3819, 1114–1117 (1968).

    Google Scholar 

  9. D. L. Timrot, M. A. Serednitskaya, and S. A. Traktueva, “Study of the viscosity of gases by the oscillating disk method,” Teploenergetika, No. 1, 83–84 (1969).

    Google Scholar 

  10. F. A. Guevara, V. V. McInteer, and W. F. Wageman, “High-temperature viscosity ratios for hydrogen, helium, argon, and nitrogen,” Phys. Fluids,12, No. 12, 2493–2505 (1969).

    Google Scholar 

  11. J. Kestin, W. Wakeham, and K. Watanabe, “Viscosity and thermal and diffusion coefficients of Ar-Ne and Ar-Kr gaseous mixtures in the temperature range 25–700°C,” J. Chem. Phys.53, No. 10, 3773–3780 (1970).

    Google Scholar 

  12. A. S. Kalelkar and J. Kestin, “Viscosity of He-Ar and He-Kr binary mixtures in the temperature range 25–720°C,” J. Chem. Phys.,52, No. 8, 4248–4261 (1970).

    Google Scholar 

  13. R. A. Dave and E. B. Smith, “Viscosities of the inert gases at high temperatures,” J. Chem. Phys.,52, No. 2, 693–703 (1970).

    Google Scholar 

  14. M. Goldblatt, F. A. Guevara, and V. V. McInteer, “High temperature viscosity ratios for krypton,” Phys. Fluids,13, No. 11, 2873–2874 (1970).

    Google Scholar 

  15. M. Goldblatt and W. E. Wageman, “High temperature viscosity ratios for xenon,” Phys. Fluids,14, No. 5, 1024–1025 (1971).

    Google Scholar 

  16. F. A. Guevara, “High temperature viscosity ratios for neon,” Phys. Fluids,14, No. 3, 746–748 (1971).

    Google Scholar 

  17. J. Kestin, S. T. Ro, and W. A. Wakeham, “Viscosity of the noble gases in the temperature range 25–700°C,” J. Chem. Phys.,56, No. 8, 4119–4124 (1972).

    Google Scholar 

  18. J. Kestin, S. T. Ro, and W. A. Wakeham, “Viscosity of the binary gaseous mixture helium-nitrogen,” J. Chem. Phys.,56, No. 8, 4036–4042 (1972).

    Google Scholar 

  19. J. Kestin, S. T. Ro, and W. A. Wakeham, “Viscosity of the binary gaseous mixture neonkrypton,” J. Chem. Phys.,56, No. 8, 4086–4091 (1972).

    Google Scholar 

  20. A. A. Clifford, P. Gray, and A. C. Scott, “Viscosities of gaseous argon, oxygen, and carbon monoxide between 273 and 1300°K,” J. Chem. Soc. Faraday Trans. I,71, No. 4, 875–882 (1975).

    Google Scholar 

  21. V. E. Lyusternik and A. V. Lavushchev, “Study of the viscosity of argon to 2000°K by the method of flow through a porous medium,” Teplofiz. Vys. Temp.,14, No. 5, 970–978 (1976).

    Google Scholar 

  22. D. L. Timrot and S. A. Traktueva, “Study of the viscosity of krypton by the oscillating disk method,” Teplofiz. Vys. Temp.,17, No. 3, 501–506 (1979).

    Google Scholar 

  23. I. A. Barr, C. P. Matthews, E. B. Smith, and A. R. Tindell, “Intermolecular forces and the gaseous viscosities of argon-xenon mixtures,” J. Chem. Phys.,85, No. 22, 3342–3347 (1981).

    Google Scholar 

  24. J. O. Hirschfelder, G. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley (1964).

  25. N. B. Vargaftik and Yu. D. Vasilevskaya, “Thermal conductivity of krypton and xenon at temperatures up to 5000°K,” Inzh.-Fiz. Zh.,39, No. 5, 853–858 (1980).

    Google Scholar 

  26. N. B. Vargaftik and Yu. D. Vasilevakaya, “Thermal conductivity of neon up to 5000°K and of argon up to 6000°K,” Inzh.-Fiz. Zh.,40, No. 3, 473–481 (1981).

    Google Scholar 

  27. N. B. Vargaftik and Yu. D. Vasilevskaya, “Thermal conductivity of helium at temperatures of (300–6000)°K,” Inzh.-Fiz. Zh., No. 3, 412–417 (1982).

    Google Scholar 

  28. J. Amdur and E. A. Mason, “Properties of gases at very high temperatures,” Phys. Fluids,1, No. 5, 370–383 (1958).

    Google Scholar 

  29. R. A. Svehla, “Estimated viscosities and thermal conductivities of gases at high temperatures,” NASA R-132 (1962), 120 pp.

  30. A. B. Kamnev and V. B. Leonas, “Experimental determination of the repulsive interaction potential and kinetic properties of the noble gases at high temperatures,” Teplofiz. Vys. Temp.,3, No. 5, 804–807 (1965).

    Google Scholar 

  31. A. B. Kamnev and V. B. Leonas, “Kinetic coefficients of the noble gases at high temperatures,” Teplofiz. Vys. Temp.,4, No. 2, 288–289 (1966).

    Google Scholar 

  32. J. T. R. Watson, Viscosity of Gases in Metric Units, Edinburgh (1972).

  33. R. M. Sevast'yanov and N. A. Zykov, “Transfer coefficients of binary mixtures of monatomic gases,” Tr. TsAGI, No. 1873, Moscow (1977).

  34. P. C. Jain, “Transport properties of neon, krypton, and xenon according to L-J (12-6) potential,” Indian J. Pure Appl. Phys.,18, No. 6, 459–461 (1980).

    Google Scholar 

  35. N. V. Tsederberg, V. N. Popov, and N. A. Morozova, Thermodynamic and Thermophysical Properties of Helium [in Russian], Atomizdat, Moscow (1969).

    Google Scholar 

  36. I. F. Golubev and N. E. Gnezdilov, Viscosity of Gaseous Mixtures [in Russian], Standartov, Moscow (1971).

    Google Scholar 

  37. N. B. Vargaftik, Handbook of Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  38. G. C. Maitland and E. B. Smith, “Critical reassessments of viscosities of 11 common gases,” J. Chem. Eng. Data,17, No. 2, 150–156 (1972).

    Google Scholar 

  39. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, Hemisphere Publ. Corp., Washington (1975).

    Google Scholar 

  40. H. J. M. Hanley, “The viscosity and thermal conductivity coefficients of dilute argon, krypton, and xenon,” J. Phys. Chem. Ref. Data,2, No. 3, 619–642 (1973).

    Google Scholar 

  41. V. A. Rabinovich, Thermophysical Properties of Neon, Argon, Krypton, and Xenon [in Russian], Standartov, Moscow (1976).

    Google Scholar 

  42. J. S. Touloukian and C. J. Ho, Properties of Nonmetallic Fluid Elements, Vol. III-2, New York (1981).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 46, No. 1, pp. 39–44, January, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargaftik, N.B., Vasilevskaya, Y.D. Viscosity of monatomic gases at temperatures up to 5000–6000°K. Journal of Engineering Physics 46, 30–34 (1984). https://doi.org/10.1007/BF00826162

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00826162

Keywords

Navigation