Skip to main content
Log in

Infarct sizing by scintigraphic techniques and nuclear magnetic resonance imaging

  • Review article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Assessment of myocardial infarct size is the cornerstone in the evaluation of interventions designed to salvage myocardium, such as thrombolytic therapy and urgent coronary angioplasty. Enzymatic methods have probably the highest accuracy but can only be used in the very early phase of infarction. The electrocardiogram allows a reasonable estimate of infarct size, but its confidence limits are wide, and in inferior wall infarction the estimates are unreliable. In recent years, radionuclide techniques have been successfully used to identify, localize and determine infarct size in the course of acute myocardial infarction. These scintigraphic measurements have provided important diagnostic, therapeutic and prognostic information based on the extent of myocardial damage. Nuclear magnetic resonance imaging, particularly with contrast enhancement, is one of the methods that have the greatest potential in accurately delineating myocardial infarct size. Nuclear medicine procedures, on the other hand, employ more biologically oriented tracers and offer promise in view of their ability to monitor biochemical alterations as an effect of therapy in the course of myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Addonizio LJ, Michler RE, Marboe C, Esser PE, Johnson LL, Seldin DW, Gersony WM, Alderson PO, Rose EA, Cannon PJ (1987) Imaging of cardial allograft rejection in dogs using indium-111 monoclonal antimyosin Fab. J Am Coll Cardiol 9:555–564

    Google Scholar 

  • Antunes ML, Seldin DW, Wall RM, Johnson LJ (1989) Measurement of acute Q-wave myocardial infarct size with single photon emission computed tomography imaging of indium-111 antimyosin. Am J Cardiol 63:777–783

    Google Scholar 

  • Beller GA (1987) Role of myocardial perfusion imaging in evaluating thrombolytic therapy for acute myocardial infarction. J Am Coll Cardiol 9:661–668

    Google Scholar 

  • Beller GA, Khaw BA, Haber E, Smith TW (1977) Localization of radiolabelled cardiac myosin-specific antibody in myocardial infarcts: comparison with technetium-99m pyrophosphate. Circulation 55:74–78

    Google Scholar 

  • Bergmann SR, Lerch RA, Fox KAA, Ludbrook PA, Welch MJ, Ter-Pogossian MM, Sobel BE (1982) Temporal dependence of beneficial effects of coronary thrombolysis characterized by positron tomography. Am J Med 73:573–581

    Google Scholar 

  • Bouchard A, Reeves RC, Cranney G, Bishop SP, Pohost GM, Bischoff P (1989) Assessment of myocardial infarct size by means of T2-weighted 1 H nuclear magnetic resonance imaging. Am Heart J 117:281–289

    Google Scholar 

  • Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR (1987) Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 10:557–567

    Google Scholar 

  • Buda AJ, Aisen AM, Juni JE, Gallagher KP, Zotz RJ (1985) Detection and sizing of myocardial ischemia and infarction by nuclear magnetic resonance imaging in the canine heart. Am Heart J 110:1284–1290

    Google Scholar 

  • Caldwell JH, Williams DL, Harp GD, Stratton JR, Ritchie JL (1984) Quantitation of size of relative myocardial perfusion defect by single-photon emission computed tomography. Circulation 70:1048–1056

    Google Scholar 

  • Caputo GR, Sechtem U, Tscholakoff D, Higgins CB (1987) Measurement of myocardial infarct at early and late time intervals using MR imaging: an experimental study in dogs. Am J Roentgenol 149:237–243

    Google Scholar 

  • Corbett JR, Lewis SE, Wolfe CL, Jansen DE, Lewis M, Rellas JS, Parkey RW, Rude RE, Buja LM, Willerson JT (1984) Measurement of myocardial infarct size by technetium pyrophosphate single-photon tomography. Am J Cardiol 54:1231–1236

    Google Scholar 

  • DeCoster PM, Melvin JA, Detry J-MR, Brasseur LA, Beckers C, Col J (1985) Coronary artery reperfusion in acute myocardial infarction: assessment by pre- and post-intervention thallium201 myocardial perfusion imaging. Am J Cardiol 55:889–893

    Google Scholar 

  • De Roos A, Matheijssen NAA, Doornbos J, Van Dijkman PRM, Van Voorthuisen AE, Van der Wall EE (1990) Assessment of myocardial infarct size after reperfusion therapy using gadolinium-DTPA enhanced magnetic resonance imaging. Radiology (in press)

  • Geltman EM, Biello D, Welch MJ, Ter-Pogossian MM, Roberts R, Sobel BE (1982) Characterization of nontransmural myocardial infarction by positron-emission tomography. Circulation 65:747–755

    Google Scholar 

  • Gibbons RJ, Verani MS, Behrenbeck T; Pellikka PA, O'Connor MK, Mahmarian JJ, Chesebro JH, Wackers FJ (1989) Feasibility of tomography99mTc-hexakis-2-methoxy-2-methylpropylisonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation 80:1277–1286

    Google Scholar 

  • Hashimoto T, Kambara H, Fudo T, Tamaki S, Nohara R, Takatsu Y, Hattori R, Tokunaga S, Kawai C (1987) Early estimation of acute myocardial infarct size soon after coronary reperfusion using emission computed tomography with technetium-99m pyrophosphate. Am J Cardiol 60:952–957

    Google Scholar 

  • Heller GV, Parker A, Silverman K, Royal H, Kolodny G, Paulin S, Braunwald E, Markis J (1987) Intracoronary thallium-201 scintigraphy after thrombolytic therapy for acute myocardial infarction compared with 10 and 100 day intravenous thallium-201 scintigraphy. J Am Coll Cardiol 9:300–307

    Google Scholar 

  • Holman BL, Goldhaber SZ, Kirsch CM, Polak JF, Friedman BJ, English RJ, Wynne J (1982) Measurement of infarct size using single photon emission computed tomography and technetium99m pyrophosphate: a description of the method and comparison with patient prognosis. Am J Cardiol 50:503–511

    Google Scholar 

  • Jansen DE, Corbett JR, Wolfe CL, Lewis SE, Gabliani G, Filipchuk N, Redish G, Parkey RW, Buja LM, Jaffe AS, Rude R, Sobel BE, Willerson JT (1985) Quantification of myocardial infarction: a comparison of single photon-emission computed tomography with pyrophosphate to serial plasma MB-creatine kinase measurements. Circulation 72:327–333

    Google Scholar 

  • Johns JA, Leavitt MB, Newell JB, Yasuda T, Leinbach RC, Gold HK, Finkelstein D, Dinsmore RE (1990) Quantification of myocardial infarct size by nuclear magnetic resonance imaging. J Am Coll Cardiol 15:143–149

    Google Scholar 

  • Johnson LL, Lerrick KS, Coromilas J, Seldin DW, Esser PD, Zimmerman JM, Keller AM, Alderson PO, Bigger JT, Cannon PJ (1987) Measurement of infarct size and percentage myocardium infarcted in a dog preparation with single photon-emission computed tomography, thallium-201 and indium 111-monoclonal antimyosin Fab. Circulation 76:181–190

    Google Scholar 

  • Keyes JW Jr, Brady TJ, Leonard PF, Svetkoff DB, Winter SM, Rogers WL, Rose EA (1981) Calculation of viable and infarcted myocardial mass from thallium-201 and emission computed tomography. J Nucl Med 22:339–343

    Google Scholar 

  • Khaw BA, Gold HK, Tsunchiro Y, Leinbach RC, Kanke M, Fallon JT, Barlai-Kovach M, Strauss HW, Sheehan F, Haber E (1986) Scintigraphic quantification of myocardial necrosis in patients after intravenous injection of myosin-specific antibody. Circulation 74:501–508

    Google Scholar 

  • Khaw BA, Strauss HW, Moore R, Fallon JT, Yasuda T, Gold HK, Haber E (1987) Myocardial damage delineated by indium 111 antimyosin Fab and technetium-99m pyrophosphate. J Nucl Med 28:76–82

    Google Scholar 

  • Ko P, Kostuk WJ, Deatrich D (1977) Technetium pyrophosphate scanning in the detection of acute myocardial infarction: clinical experience. Can Med Assoc J 116:260–266

    Google Scholar 

  • Lewis SE, Devous MD Sr, Corbett JR, Izquerdo C, Nicod P, Wolfe CL, Parkey RW, Buja LM, Willerson JT (1984) Measurement of infarct size in acute canine myocardial infarction by singlephoton emission computed tomography with technetium-99m pyrophosphate. Am J Cardiol 54:193–199

    Google Scholar 

  • Mahmarian JJ, Pratt CM, Borges-Neto S, Cashion WR, Roberts R, Verani MS (1988) Quantification of infarct size by201TI single-photon emission computed tomography during acute myocardial infarction in humans. Circulation 78:831–839

    Google Scholar 

  • Melin JA, Wijns W, Keyeux A, Gurné O, Cogneau M, Michel C, Bol A, Robert A, Charlier A, Pouleur H (1988) Assessment of thallium-201 redistribution versus glucose uptake as predictors of viability after coronary occlusion and reperfusion. Circulation 77:27–34

    Google Scholar 

  • Morrison J, Coromilas J, Munsey D, Robbins M, Zema M, Chiaramida S, Reiser P, Scherr L (1980) Correlation of radionuclide estimates of myocardial infarction size and release of creatine kinase-MB in man. Circulation 62:277–287

    Google Scholar 

  • Nishimura T, Yamada Y, Hayashi M, Kozuka T, Nakatani T, Noda H, Takano H (1989) Determination of infarct size of acute myocardial infarction in dogs by magnetic resonance imaging and gadolinium-DTPA: comparison with indium-111 antimyosin imaging. Am J Physiol Imag 4:83–88

    Google Scholar 

  • Okada RD, Pohost GM (1984) The use of pre-intervention and post-intervention thallium imaging for assessing the early and late effects of experimental coronary arterial reperfusion in dogs. Circulation 69:1153–1159

    Google Scholar 

  • Parker JA (1989) Quantitative SPELT: basic theoretical considerations. Sem Nucl Med 19:3–12

    Google Scholar 

  • Piérard LA, De Landsheere CM, Berthe C, Rigo P, Kulbertus HE (1990) Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 15:1021–1031

    Google Scholar 

  • Prigent F, Maddahi J, Garcia EV, Satoh Y, Van Train K, Berman DS (1986) Quantification of myocardial infarct size by thallium-201 single-photon emission computed tomography: experimental validation in the dog. Circulation 74:852–861

    Google Scholar 

  • Prigent F, Maddahi J, Garcia EV, Reiser K, Lew AS, Berman DS (1987) Comparative methods for quantifying myocardial infarct size by thallium-201 SPELT. J Nucl Med 28:325–333

    Google Scholar 

  • Res JCJ, Simoons ML, Van der Wall EE, Van Eenige MJ, Vermeer F, Verheugt FWA, Wijns W, Braat S, Remme WJ, Serruys PW, Roos JP (1986) Long term improvement in global left ventricular function after early thrombolytic treatment in acute myocardial infarction. Br Heart J 56:414–421

    Google Scholar 

  • Rigo P, De Landsheere C (1989) Radionuclide imaging in the assessment of cardiac disease. Curr Opin Cardiol 4:824–833

    Google Scholar 

  • Ritchie JL, Davis KB, Williams DL, Caldwell J, Kennedy JW (1984) Global and regional left ventricular function and tomographic radionuclide perfusion: the Western Washington Intracoronary Streptokinase in Myocardial Infarction Trial. Circulation 70:867–875

    Google Scholar 

  • Rokey R, Verani M, Bolli R, Kuo LC, Ford JJ, Wendt RE, Schneiders NJ, Bryan RN, Roberts R (1986) Myocardial infarct size quantification by MRI imaging early after coronary artery occlusion in dogs. Radiology 158:771–774

    Google Scholar 

  • Ryan T, Tarver RD, Duerk JL, Sawada SG, Hollenkamp NC (1990) Distinguishing viable from infarcted myocardium after experimental ischemia and reperfusion by using nuclear magnetic resonance imaging. J Am Coll Cardiol 15:1355–1364

    Google Scholar 

  • Santoro GM, Bisi G, Sciagra R, Leoncini M, Fazzini PF, Meldolesi U (1990) Single photon emission computed tomography with technetium-99m hexakis 2-methoxyisobutyl isonitrile in acute myocardial infarction before and after thrombolytic treatment: assessment of salvaged myocardium and prediction of late recovery. J Am Coll Cardiol 15:310–314

    Google Scholar 

  • Schneider RM, Chu A, Akaishi M, Weintraub WS, Morris KG, Cobb FR (1985) Left ventricular ejection fraction after acute coronary occlusion in conscious dogs: relation to the extent and site of myocardial infarction. Circulation 72:632–638

    Google Scholar 

  • Schwartz JS, Ponto RA, Forstrom LA, Bache RJ (1983) Decrease in thallium-201 image defect size after permanent coronary occlusion. Am Heart J 106:1083–1088

    Google Scholar 

  • Silverman KJ, Becker LC, Bulkley BH, Burow RD, Mellits ED, Kallman CH, Weissfeldt ML (1980) Value of early thallium-201 scintigraphy for predicting mortality in patients with acute myocardial infarction. Circulation 61:996–1003

    Google Scholar 

  • Sochor H, Schwaiger M, Schelbert HR, Huang SC, Ellison D, Hansen H, Selin C, Parodi O, Phelps M (1987) Relationship between T1-201, Tc-99m (Sn) pyrophosphate and F-18 2-deoxyglucose uptake in ischemically injured dog myocardium. Am Heart J 114:1066–1077

    Google Scholar 

  • Stokely EM, Buja M, Lewis SE, Devous MD Sr, Corbett JR, Wolfe CL, Buja LM, Willerson JT (1976) Measurement of acute myocardial infarcts in dogs with99mTc-stannous pyrophosphate scintigrams. J Nucl Med 17:1–5

    Google Scholar 

  • Tamaki N, Yonekura Y, Senda M, Yamashita K, Koide H, Saji H, Hashimoto T, Fudo T, Kambara H, Kawai C, Konishi J (1988) Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 29:1181–1188

    Google Scholar 

  • Tamaki S, Nakajima H, Murakami T, Yui Y, Kambara H, Kadota K, Yoshida A, Kawai C, Tamaki N, Mukai T, Ishii Y, Torizuka K (1982) Estimation of infarct size by myocardial emission computed tomography with thallium-201 and its relation to creatine kinase-MB release after myocardial infarction in man. Circulation 66:994–1001

    Google Scholar 

  • Ter-Pogossian MM, Klein MM, Markham J, Roberts R, Sobel BE (1980) Regional assessment of myocardial metabolic integrity in vivo by positron-emission tomography with C-11-labeled palmitate. Circulation 61:242–255

    Google Scholar 

  • Tscholakoff D, Higgins CB, Sechtum U, Caputo G, Derugin N (1986) MRI of reperfused infarcts in dogs. Am J Roentgenol 146:925–930

    Google Scholar 

  • Tweddel AC, Martin W, McGhie I, Hutton I (1988) Infarct size can be measured acutely in developing myocardial infarction. Br Heart J 2:29 (Abstract)

    Google Scholar 

  • Van der Wall EE, Res JCJ, Van Eenige MJ, Verheugt FWA, Wijns W, Braat S, de Zwaan C, Remme WJ, Vermeer F, Reiber JHC, Simoons ML (1986) Effects of intracoronary thrombolysis on global left ventricular function assessed by an automated edge detection technique. J Nucl Med 27:478–483

    Google Scholar 

  • Van der Wall EE, Res JCJ, Van den Pol R, Vermeer F, Van der Laarse A, Braat S, Fioretti P, Krauss XH, Verheugt FWA, Simoons ML (1988) Improvement of myocardial perfusion after thrombolysis assessed by thallium-201 exercise scintigraphy. Eur Heart J 9:828–835

    Google Scholar 

  • Verani MS, Jeroudi MO, Mahmarian JJ, Boyce TM, Borges-Neto S, Patel B, Bolli R (1988) Quantification of myocardial infarction during coronary occlusion and myocardial salvage after reperfusion using cardiac imaging with technetium-99m hexakis 2-methoxyisobutyl isonitrile. J Am Coll Cardiol 12:1573–1581

    Google Scholar 

  • Wackers FJT, Busemann Sokole E, Samson G, Van der Schoot JB, Lie KI, Liem KL, Wellens HJJ (1976) Value and limitations of thallium-201 scintigraphy in the acute phase of myocardial infarction. N Engl J Med 295:1–5

    Google Scholar 

  • Wackers FJT, Becker AE, Samson G, Busemann Sokole E, Van der Schoot JB, Vet AJT, Lie KI, Durrer D, Wellens HJJ (1977) Location and size of acute transmural myocardial infarction estimated from thallium-201 scintiscans. A clinicopathologic study. Circulation 56:72–78

    Google Scholar 

  • Wackers FJ, Gibbons R, Kayden D, Pellika P, Behrenbeck T, Verani M, Mahmarian J, Zaret B (1988) Serial planar Tc-99m isonitrile imaging for early noninvasive identification of reperfusion after thrombolysis. Circulation 78 (Suppl):II-130 (Abstract)

    Google Scholar 

  • White RD, Holt WW, Cheitlin MD, Cassidy MM, Ports TA, Liu AD, Botvinick EH, Higgins CB (1988) Estimation of the functional and anatomic extent of myocardial infarction using magnetic resonance imaging. Am Heart J 115:740–748

    Google Scholar 

  • Wisenberg G, Prato FS, Carroll SE, Turner KL, Marshall T (1988a) Serial nuclear magnetic resonance imaging of acute myocardial infarction with and without reperfusion. Am Heart J 1115:510–518

    Google Scholar 

  • Wisenberg G, Finnic KJ, Jablonsky G, Kostuk WJ, Marshall T (1988b) Nuclear magnetic resonance and radionuclide angiographic assessment of acute myocardial infarction in a randomized trial of intravenous streptokinase. Am J Cardiol 62:1011–1016

    Google Scholar 

  • Wolfe CL, Corbett JR, Lewis SE, Buja LM, Willerson JT (1984) Determination of left ventricular mass by single-photon emission computed tomography with thallium-201. Am J Cardiol 53:1365–1368

    Google Scholar 

  • Wynne J, Holman BL (1980) Acute myocardial infarct scintigraphy with infarct-avid radiotracers. Med Clin North Am 64:119–125

    Google Scholar 

  • Yasuda T, Palacios IF, Dee W, Fallon JT, Gold HK, Leinbach RC, Strauss HW, Khaw BA, Haber E (1987) Indium 111-monoclonal antimyosin antibody imaging in the diagnosis of acute myocarditis. Circulation 76:306–311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Wall, E.E., Niemeyer, M.G., de Roos, A. et al. Infarct sizing by scintigraphic techniques and nuclear magnetic resonance imaging. Eur J Nucl Med 17, 83–90 (1990). https://doi.org/10.1007/BF00819409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00819409

Key words

Navigation