Skip to main content
Log in

N2O decomposition over [Fe]-ZSM-5 and Fe-HZSM-5 zeolites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The N2O decomposition over an [Fe]-ZSM-5 and an Fe-HZSM-5 zeolite was studied. We found that framework incorporated iron species were much more active than Fe(III) introduced as framework charge countercations by ion exchange (TOF at 0.1 vol% N2O:1.47 × 10−4 at 280°C for [Fe]-ZSM-5 vs. 2.58 × 10−4 at 468°C for Fe-HZSM-5). The higher activity of [Fe]-ZSM-5 was attributed to the uniqueness of framework iron species. Both [Fe]-ZSM-5 and Fe-HZSM-5 zeolites showed enhanced activity in the presence of excess oxygen. This is in sharp contrast to ruthenium exchanged zeolites which showed strong oxygen inhibiting effect on the rate of N2O decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Fu, V.N. Korchak and W.K. Hall, J. Catal. 68 (1981) 166.

    Google Scholar 

  2. J. Leglise, J.O. Petunchi and W.K. Hall, J. Catal. 86 (1984) 392.

    Google Scholar 

  3. L.M. Aparicio, M.A. Ulla, W.S. Milman and J.A. Dumesic, J. Catal. 110 (1988) 330.

    Google Scholar 

  4. G.I. Panov, V.I. Sobolev and S. Kharitonov, J. Mol. Catal. 61 (1990) 85.

    Google Scholar 

  5. M. Tabata, H. Hamada, Y. Kindachi, M. Sasaki and T. Ito, Chem. Exp. 7 (1992) 77.

    Google Scholar 

  6. Y.-J. Li and J.N. Armor, Appl. Catal. B 1 (1992) L21–29.

    Google Scholar 

  7. Y.-J. Li and J.N. Armor, US Patent 5171553 (1992).

  8. Y.-F. Chang, J.G. McCarty, E.D. Wachsman and V. Wong, Appl. Catal. B 84 (1994) 283.

    Google Scholar 

  9. V.I. Sobolev, O.N. Kovalenko, A.S. Kharitonov, Y.D. Pankratiev and G.I. Panov, Mendeev's Commun. 1 (1991) 29.

    Google Scholar 

  10. V.I. Sobolev, G.I. Panov, A.S. Kharitonov, V.N. Romannikov, A.M. Volodin and K.G. Ione, J. Catal. 139 (1993) 435.

    Google Scholar 

  11. R. Szostak and T.L. Thomas, J. Catal. 100 (1986) 555.

    Google Scholar 

  12. G.P. Handreck and T.D. Smith, J. Chem. Soc. Faraday Trans. I 85 (1989) 3195.

    Google Scholar 

  13. Y.-L. Zhang, PhD Thesis, Fudan University, PR China (1994).

  14. A. Meagher, V. Nair and R. Szostak, Zeolites 8 (1988) 3.

    Google Scholar 

  15. M.A. Uddin, T. Komatsu and T. Yoshima, Microporous Mater. 1 (1993) 201.

    Google Scholar 

  16. J. Galuszka, T. Sato and J.K. Sawacki, J. Catal. 136 (1992) 96.

    Google Scholar 

  17. M.A. Uddin, T. Komatsu and T. Yoshima, J. Catal. 146 (1994) 468.

    Google Scholar 

  18. T. Inui, H. Matsuda, O. Yamase, H. Nagata, K. Fukuda, T. Ukawa and A. Miyamota, J. Catal. 98 (1986) 491.

    Google Scholar 

  19. P.A. Jacobs,Carboniogenic Activity of Zeolites (Elsevier, Amsterdam, 1977).

    Google Scholar 

  20. O.D. Delafosse, in:Catalysis by Zeolites, eds. B. Imelik et al. (Elsevier, Amsterdam, 1980) p. 235.

    Google Scholar 

  21. P.A. Jacobs, J.B. Utterhoeven and H.K. Beyer, J. Chem. Soc. Faraday Trans. I 75 (1979) 56.

    Google Scholar 

  22. R.G. Herman, J.H. Lunsford, H.K. Beyer, P.A. Jacobs and J.B. Utterhoeven, J. Phys. Chem. 79 (1975) 2388.

    Google Scholar 

  23. P.A. Jacobs, H. Nijs and J. Verdonck, J. Chem. Soc. Faraday Trans. I 75 (1979) 1196.

    Google Scholar 

  24. Y.-Y. Huang and J.R. Anderson, J. Catal. 40 (1975) 143.

    Google Scholar 

  25. R.L. Garten, W.N. Delgass and M. Boudart, J. Catal. 18 (1970) 90.

    Google Scholar 

  26. W.N. Delgass, R.L. Garten and M. Boudart, J. Phys. Chem. 73 (1969) 2970.

    Google Scholar 

  27. K.G. Ione, L.A. Vostrikova and M.W. Mastikin, J. Mol. Catal. 31 (1985) 355.

    Google Scholar 

  28. L.M. Kustov, V.B. Kazansky and P. Ratnasamy, Zeolites 7 (1987) 79.

    Google Scholar 

  29. S. Kaliaguine, J.B. Nagy and Z. Gabelica, in:Keynotes in Energy Related Catalysis, ed. S. Kaliaguine (Elsevier, Amsterdam, 1988) p. 381.

    Google Scholar 

  30. A. Raj, S. Sivasanker and K. Lázár, J. Catal. 147 (1994) 207.

    Google Scholar 

  31. R. Szostak, N. Nair, D.K. Simmons, T.L. Thomas, R. Kuvadia, B. Dunson and D.C. Shieh, in:Innovations in Zeolite Materials Science, eds. P.J. Grobert et al. (Elsevier, Amsterdam, 1988) p. 403.

    Google Scholar 

  32. P.A. Jacobs, in:Metal Clusters in Catalysis, eds. B.C. Gates, L. Guczi and H. Knözinger (Elsevier, Amsterdam, 1986) p. 357.

    Google Scholar 

  33. E.R.S. Winter, J. Catal. 15 (1969) 144.

    Google Scholar 

  34. E.R.S. Winter, J. Catal. 19 (1970) 32.

    Google Scholar 

  35. G.M. Dhar and V. Srinivasan, Int. J. Chem. Kinet. 14 (1982) 415.

    Google Scholar 

  36. Y.-F. Chang, J.G. McCarty and E.D. Wachsman, Appl. Catal. B, submitted.

  37. G.I. Panov, A.S. Kharitonov and V.I. Sobolev, Appl. Catal. A 98 (1993) 1.

    Google Scholar 

  38. Y.-F. Chang, G.A. Somorjai and H. Heinemann, J. Catal., accepted (1994).

  39. B. Wichterlova, Zeolites 1 (1981) 181.

    Google Scholar 

  40. A.V. Kucherov and A.A. Slinkin, Zeolites 6 (1986) 1754.

    Google Scholar 

  41. A.V. Kucherov, A.A. Slinkin, G.K. Beyer and G. Berbely, J. Chem. Soc. Faraday Trans. I 85 (1989) 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y.F., McCarty, J.G. & Zhang, Y.L. N2O decomposition over [Fe]-ZSM-5 and Fe-HZSM-5 zeolites. Catal Lett 34, 163–177 (1995). https://doi.org/10.1007/BF00808332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00808332

Keywords

Navigation