Skip to main content
Log in

Functional domains of the gastric HK ATPase

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The gastric H+ + K+ ATPase is a member of the phosphorylating class of transport ATPase. Based on sequence homologies and CHO content, there may be ab subunit associated with the catalytic subunit of the H+ + K+ ATPase. Its function, if present, is unknown. The pump catalyzes a stoichiometric exchange of H+ for K+, but is also able to transport Na+ in the forward direction. This suggests that the transport step involves hydronium rather than protons. The initial binding site is likely to contain a histidine residue to account for the high affinity of the cellular site. The extracellular site probably lacks this histidine, so that a low affinity for hydronium allows release into a solution of pH 0.8. Labelling with positively charge, luminally reactive reagents that block ATPase and pump activity has shown that a region containing H5 and H6 and the intervening luminal loop is involved in necessary conformational changes for normal pump activity. The calculated structure of this loop shows the presence of ana helical,b turn, andb strand sector, with negative charges close to the membrane domain. This sector provides a possible site of interaction of drugs with the H+ + K+ ATPase, and may be part of the K+ pathway in the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alawqati, Q. (1986)Annu. Rev. Cell. Biol. 2, 179–199.

    Google Scholar 

  • Boyer, P. D. (1988)Trends Biochem. Sci. 12, 3–7.

    Google Scholar 

  • Brooker, R. J., and Slayman, C. W. (1983)J. Biol. Chem. 258, 222–226.

    Google Scholar 

  • Brown, T. A., Horowitz, B., Miller, R. P., Mcdonough, A. A., and Farley, R. A. (1987)Biochem. Biophys. Acta 912, 244–253.

    Google Scholar 

  • Caplan, M. J., Baron, R., Neff, L., Shull, G., and Forbush, B. R. (1989)J. Cell. Biol. 107, 783A.

    Google Scholar 

  • Collins, J. H., and Leszyk, J. (1987)Biochemistry 26, 8665–8668.

    Google Scholar 

  • Fendler, K., Van der Hijden, H., Nael, G., Depont, J. J., and Bamberg, E. (1988)Prog. Clin. Biol. Res. 268, 501–510.

    Google Scholar 

  • Forgac, M., and Cantley, L. (1984)J. Biol. Chem. 259, 8101–8105.

    Google Scholar 

  • Ganser, A. L., and Forte, J. G. (1973)Biochim. Biophys. Acta 307, 169–180.

    Google Scholar 

  • Geering, K., Meyer, D. I., Paccolat, M. P., Kraehenbul, J. P., and Rossier, B. C. (1985)J. Biol. Chem. 260, 5154–5160.

    Google Scholar 

  • Goldshlegger, R., Karlish, S. J. D., Rephaeli, A., and Stein, W. D. (1987)J. Physiol. 287, 331–355.

    Google Scholar 

  • Hall, C. C., and Ruochi, A. E. (1980)Proc. Natl. Acad. Sci. USA 77, 4529–4533.

    Google Scholar 

  • Hall, K., Perez, G., Anderson, D., Kaplan, J., Hersey, S. J., and Sachs, G. (1989a),Faseb J. 3, A873.

  • Hall, K., Perez, G., Anderson, D., Kaplan, J. H., Hersey, S. J., and Sachs, G. (1989b)Biochemistry, in press.

  • Hersey, S. J., Steiner, L., Mendlein, J., Rabon, E., and Sachs, G. (1988)Biochem. Biophys. Acta 956, 49–57.

    Google Scholar 

  • Jorgensen, P. L., and Andersen, J. P. (1988)J. Membr. Biol. 103, 95–120.

    Google Scholar 

  • Karlish, S. J. D., and Kempner, E. S. (1984)Biochem. Biophys. Acta 776, 288–298.

    Google Scholar 

  • Keeling, D. J. Fallowfield, C., Lawrie, K. M. W., Saunders, D., Richardson, S., and Ife, R. J. (1988a)J. Biol. Chem. 264, 5552–5558.

    Google Scholar 

  • Keeling, D. J., Taylor, A. G., and Schudt, C. (1989b)J. Biol. Chem. 264, 5545–5551.

    Google Scholar 

  • Lorentzon, P., Eklundh, B., Brandstrom, A., and Wallmark, B. (1985)Biochem. Biophys. Acta 817, 25–32.

    Google Scholar 

  • Lorentzon, P., Jackson, R. J., Wallmark, B., and Sachs, G. (1987)Biochem. Biophys. Acta 897, 41–51.

    Google Scholar 

  • Lorentzon, P., Sachs, G., and Wallmark, B. (1988)J. Biol. Chem. 263, 10705–10710.

    Google Scholar 

  • Maeda, M., Ishizaki, J., and Futai, M. (1988a)Biochem. Biophys. Res. Commun. 157, 203–209.

    Google Scholar 

  • Maeda, M., Tagaya, M., and Futai, M. (1988b)J. Biol. Chem. 263, 3652–3656.

    Google Scholar 

  • Munson, K. B., and Sachs, G. (1988)Biochemistry 27, 3932–3938.

    Google Scholar 

  • Okamoto, C., Reenstra, W. W., Li, W., and Forte, J. G. (1989)J. Cell. Biol. 107, 125a.

    Google Scholar 

  • Ovchinnikov, Y. A. (1987)Trends Biochem. Sci. 12, 434–438.

    Google Scholar 

  • Pederson, P. L. (1983)Annu. Rev. Biochem. 52, 801–824.

    Google Scholar 

  • Polvani, C., Sachs, G., and Blostein, R. (1989)Biophys. J. 55, 337A.

    Google Scholar 

  • Rabon, E. C., and Bassilian, S. (1989)Biochemistry, in press.

  • Rabon, E. C., Gunther, R. D., Bassilian, S., and Kempner, E. S. (1988)J. Biol. Chem. 263, 16189–16194.

    Google Scholar 

  • Reenstra, W. W., Bettencourt, J. D., and Forte, J. G. (1988)J. Biol. Chem. 263, 19618–19625.

    Google Scholar 

  • Saccomani, G., Barcellona, M. L., Rabon, E., and Sachs, G. (1980) inHydrogen Ion Transport in Epithelia (Schulz, I., Sachs, G., Forte, J. G., and Ulrich, K. J., eds.), Elsevier, Amsterdam, pp. 175–183.

    Google Scholar 

  • Saccomani, G., Barcellona, M. L., and Sachs, G. (1981)J. Biol. Chem. 256, 12405–12410.

    Google Scholar 

  • Sachs, G., Chang, H. H., Rabon, E., Schackmann, R., Lewin, M., and Saccomani, G. (1976)J. Biol. Chem. 251, 7690–7698.

    Google Scholar 

  • Sachs, G., Carlsson, E., Lindberg, P., and Wallmark, B. (1988)Annu. Rev. Pharmacol. Toxicol. 28, 269–284.

    Google Scholar 

  • Sachs, G., Hall, K., Munson, K., Aures-Fischer, D., Anderson, D. N., Balaji, V. N., and Hersey, S. J., inPumps, Carriers, and Channels (Keeling, D. J., and Rink, T. J., eds.), Academic Press, in press.

  • Serrano, R., Kielland-Brandt, M. C., and Fink, G. R. (1986)Nature (London)219, 689–693.

    Google Scholar 

  • Shull, G. E., and Lingrel, J. B. (1986)J. Biol. Chem. 261, 16788–16791.

    Google Scholar 

  • Solioz, M., Mathews, S., and Furst, P. (1987)J. Biol. Chem. 262, 7458–7462.

    Google Scholar 

  • Spenney, J. G., Saccomani, G., Spitzer, H. L., Tomana, M., and Sachs, G. (1974)Arch. Biochem. Biophys. 161, 456–471.

    Google Scholar 

  • Tai, M. M., Im, W. B., Davis, J. P., Blakeman, D. P., Zurcher Neely, H. A., and Heinrikson, R. L., (1989)Biochemistry 28, 3183–3187.

    Google Scholar 

  • Wallmark, B. Stewart, H. B. Rabon, E., Saccomani, G., and Sachs, G. (1980)J. Biol. Chem. 255, 5313–5319.

    Google Scholar 

  • Wallmark, B., Briving, C., Fryklund, J., Munson, K., Jackson, R., Mendlein, J., Rabon, E., and Sachs, G. (1987)J. Biol. Chem. 262, 2077–2084.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Emory University, Atlanta, Georgia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachs, G., Munson, K., Balaji, V.N. et al. Functional domains of the gastric HK ATPase. J Bioenerg Biomembr 21, 573–588 (1989). https://doi.org/10.1007/BF00808114

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00808114

Key Words

Navigation