Skip to main content
Log in

n-butane isomerization on sulfated zirconia. Deactivation and regeneration as studied by Raman, UV-VIS diffuse reflectance and ESR spectroscopy

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

n-butane isomerization on sulfated zirconia was studied in the temperature range 393–473 K. Rapid deactivation occurs, when the reaction is carried out in He carrier gas. In contrast, stable stationary activity was observed in H2 carrier gas. In situ Raman and UV-VIS diffuse reflectance spectroscopy and ESR showed that the deactivation is caused by the formation of allylic and polyenylic cations and polycyclic aromatic compounds, the formation of which is largely prevented in the presence of H2. Deactivated catalysts can be fully regenerated by treatment at 723–753 K in flowing O2. The regeneration process was also followed by in situ spectroscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hino and K. Arata, J. Chem. Soc. Chem. Commun. (1980) 851.

  2. K. Tanabe, M. Itoh, K. Morishige and H. Hattori, in:Preparation of Catalysts, eds. B. Delmon, P.A. Jacobs and G. Poncelet (Elsevier, Amsterdam, 1976) p. 65.

    Google Scholar 

  3. H. Hino and K. Arata, J. Chem. Soc. Chem. Commun. (1979) 1148.

  4. C.-Y. Hsu, C.R. Heimbuch, C.T. Armes and B.C. Gates, J. Chem. Soc. Chem. Commun. (1992) 1645.

  5. A. Jatia, C. Chang, J.D. MacLeod, T. Okubo and M.E. Davis, Catal. Lett. 25 (1994) 21.

    Google Scholar 

  6. G.A. Olah, G.K.S. Prakash and J. Sommer,Superacids (Wiley-Interscience, New York, 1985), and references therein.

    Google Scholar 

  7. C. Guo, S. Lieo, Z. Qian and K. Tanabe, Appl. Catal. 107 (1994) 239.

    Google Scholar 

  8. C. Guo, S. Yao, J. Cao and Z. Qian, Appl. Catal. 107 (1994) 229.

    Google Scholar 

  9. F. Garin, D. Andriamasinoro, A. Abdulsamad and J. Sommer, J. Catal. 131 (1991) 199.

    Google Scholar 

  10. V. Adeeva, J.W. de Haan, J. Jänchen, G.D. Lei, V. Schünemann, L.J.M. van de Ven, W.M.H. Sachtler and R.A. van Santen, J. Catal. 151 (1995) 364.

    Google Scholar 

  11. V. Adeeva, G.D. Lei and W.M.H. Sachtler, Appl. Catal. A 118 (1994) L 11

    Google Scholar 

  12. K. Ebitani, J. Konishi and H. Hattori, J. Catal. 130 (1991) 257.

    Google Scholar 

  13. B.H. Davis, R.A. Keogh and R. Srinivasan, Catal. Today 20 (1994) 219.

    Google Scholar 

  14. H. Zeilinger, Doctoral Thesis, Universität München, Germany (1991).

    Google Scholar 

  15. P. Knoll, R. Singer and W. Kiefer, Appl. Spectrosc. 44 (1990) 776; Spielbauer, Appl. Spectrosc., accepted.

    Google Scholar 

  16. E. Bosch, Diploma Thesis, Universität München, Germany (1994).

    Google Scholar 

  17. T. Riemer, D. Spielbauer, M. Hunger, G.A.H. Mekhemer and H. Knözinger, J. Chem. Soc. Chem. Commun. (1994) 1181.

  18. N.B. Colthup, L.H. Daly and S.E. Wiberley,Introduction to Infrared and Roman Spectroscopy, 3rd Ed. (Academic Press, New York, 1990).

    Google Scholar 

  19. J.-P. Lange, A. Gutsze, J. Allgeier and H.G. Karge, Appl. Catal. 45 (1988) 345.

    Google Scholar 

  20. P. E. Eberly Jr., J. Phys. Chem. 71 (1967) 1717.

    Google Scholar 

  21. M. Bensitel, O. Saur, J.C. Lavalley and B.A. Morrow, Mater. Chem. Phys. 19 (1988) 147.

    Google Scholar 

  22. F.R. Chen, G. Coudurier, J.-F. Joly and J.C. Vedrine, J. Catal. 143 (1993) 616.

    Google Scholar 

  23. H.G. Karge, M. Laniecki, M. Ziolek, G. Onyestyak, A. Kiss, P. Kleinschmitt and M. Siray, in:Zeolites: Facts, Figures, Future, eds. P.A. Jacobs and R. van Santen (Elsevier, Amsterdam, 1989) p. 1327.

    Google Scholar 

  24. T.S. Sorensen, J. Am. Chem. Soc. 87 (1965) 5075.

    Google Scholar 

  25. M. Hesse, H. Meier and B. Zeeh,Spektrokopische Methoden in der organischen Chemie, 3rd Ed. (Thieme, Stuttgart, 1987) p. 18.

    Google Scholar 

  26. M.J. Torralvo, M.A. Alario and J. Soria, J. Catal. 84 (1984) 473.

    Google Scholar 

  27. T. Castner Jr., G.S. Newell, W.C. Holton and C.P. Slichter, J. Chem. Phys. 32 (1960) 668.

    Google Scholar 

  28. C. Morterra, E. Giamello, L. Orio and M. Volante, J. Phys. Chem. 94 (1990) 3111.

    Google Scholar 

  29. J.R. Morton, D.M. Bishop and M. Randic, J. Chem. Phys. 45 (1966) 1885.

    Google Scholar 

  30. M. Che and A.J. Tench, Adv. Catal. 32 (1983) 1; M. Setaka and T. Kwan, Bull. Chem. Soc. Jpn. 43 (1970) 2727.

    Google Scholar 

  31. K.-H. Jacob, E. Knözinger and S. Benfer, J. Chem. Soc. Faraday Trans. 90 (1994) 2969.

    Google Scholar 

  32. M. Iwamoto and J.H. Lunsford, J. Phys. Chem. 84 (1980) 3079.

    Google Scholar 

  33. A. Gutsze and S. Orzeszko, Adv. Colloid Interf. Sci. 23 (1985) 215.

    Google Scholar 

  34. J. Kondo, Y. Sakata, K. Domen, K. Maruya and T. Onishi, J. Chem. Soc. Faraday Trans. 86 (1990) 397.

    Google Scholar 

  35. H.G. Karge, in:Introduction to Zeolite Science and Practice, eds. H. van Bekkum, E.M. Flanigen and J.C. Jansen (Elsevier, Amsterdam, 1991)p. 531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spielbauer, D., Mekhemer, G.A.H., Bosch, E. et al. n-butane isomerization on sulfated zirconia. Deactivation and regeneration as studied by Raman, UV-VIS diffuse reflectance and ESR spectroscopy. Catal Lett 36, 59–68 (1996). https://doi.org/10.1007/BF00807206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00807206

Keywords

Navigation