Skip to main content
Log in

Methionine and lysine metabolism in the rumen and the possible effects of their metabolites on the nutrition and physiology of ruminants

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

This article briefly summarizes the metabolism of methionine and lysine in the rumen of ruminant animals and known and inferable effects of their metabolites on the nutrition and physiology of ruminant animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison MJ (1970) Nitrogen metabolism of ruminal micro-organisms. In: Phillipson AT (ed) Physiology of digestion and metabolism in the ruminant. Oriel Press, Newcastle upon Tyne, England, pp 456–473

    Google Scholar 

  • Aymard C, Seyer L, Cheftel J-C (1979) Enzymatic reduction of methionine sulfoxide. In vitro experiments with rat liver and kidney. Agric Biol Chem 43: 1869–1872

    Google Scholar 

  • Belasco IJ (1980) Fate of carbon-14 labelled methionine hydroxy analog and methionine in the lactating dairy cow. J Dairy Sci 63: 775–784

    Google Scholar 

  • Bergen WG, Purser DB, Cline JH (1967) Enzymatic determination of the protein quality of individual rumen bacteria. J Nutr 92: 357–364

    Google Scholar 

  • Bergen WG, Purser DB, Cline JH (1968) Determination of limiting amino acids of rumenisolated microbial proteins fed to rat. J Dairy Sci 51: 1698–1700

    Google Scholar 

  • Bird PR (1972) Sulphur metabolism and excretion studies in ruminants. V. Ruminal desulphuration of methionine and cyst(e)ine. Aust J Biol Sci 25: 185–193

    Google Scholar 

  • Bird PR, Moir RJ (1972) Sulphur metabolism and excretion studies in ruminants. VIII. Metionine degradation and utilization in sheep when infused into the rumen or abomasum. Aust J Biol Sci 25: 835–848

    Google Scholar 

  • Block RJ, Stekol JA, Loosli JK (1951) Synthesis of sulfur amino acids from inorganic sulfate by ruminants. II. Synthesis of cystine and methionine from sodium sulfate by the goat and by the microorganisms of the rumen of the ewe. Arch Biochem Biophys 33: 353–362

    Google Scholar 

  • Broderick GA, Wallace RJ, Ørskov ER (1991) Control of rate and extent of protein degradation. In: Tsuda T, Sasaki Y, Kawashima R (eds) Physiological aspects of digestion and metabolism in ruminants. Academic Press, New York, pp 541–592

    Google Scholar 

  • Buttery PJ, Foulds AN (1985) Amino acid requirement of ruminants. In: Haresign W, Cole DJA (eds) Recent advances in animal nutrition — 1985. Butterworths, London, pp 257–271

    Google Scholar 

  • Canale CJ, Muller LD, McCahon HA, Whitsel TJ, Varga GA, Lormore MA (1990) Dietary fat and ruminally protected amino acids for high producing dairy cows. J Dairy Sci 73: 135–141

    Google Scholar 

  • Chalupa W (1976) Degradation of amino acids by the mixed rumen microbial population. J Anim Sci 43: 828–834

    Google Scholar 

  • Chow JM, DePeters EJ, Baldwin RL (1990) Effect of rumen-protected methionine and lysine on casein in milk when diets high in fat or concentrate are fed. J Dairy Sci 73: 1051–1061

    Google Scholar 

  • Cook RM, Brown RE, Davis CL (1965) Protein metaboslim in the rumen. I. Absorption of glycine and other amino acids. J Dairy Sci 48: 475–483

    Google Scholar 

  • Czerkawski JW (1976) Chemical composition of microbial matter in the rumen. J Sci Food Agric 27: 621–632

    Google Scholar 

  • Dohner PM, Cardon BP (1954) Anaerobic fermentation of lysine. J Bacteriol 67: 608–611

    Google Scholar 

  • Dunham JR, Ward G, Bassette R, Reddy MC (1968) Methionine as a precursor of methyl sulfide in cows' milk. J Dairy Sci 51: 199–201

    Google Scholar 

  • Ganapathy V, Leibach FH (1982) Transport and utilization of methionine sulfoxide in the rabbit. Biochem Biophys Acta 693: 305–314

    Google Scholar 

  • Ghuysen JM (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 32: 425–464

    Google Scholar 

  • Giacobini E (1983) Imino acids of the brain. In: Lajtha A (ed) Handbook of neurochemistry, vol 3, 2nd edn. Plenum Press, New York, pp 583–605

    Google Scholar 

  • Giacobini E, Nomura Y, Schmidt-Glenewinkel T (1980) Pipecolic acid: Origin, biosynthesis and metabolism in the brain. Cell Molec Biol 26: 135–146

    Google Scholar 

  • Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Vilsamis MP, Wisniewski HK, Ritch RH, Norton WT, Rapid I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182: 62–64

    Google Scholar 

  • Gutierrez MC, Delgado-Coello BA (1989) Influence of pipecolic acid on the release and uptake of [3H]GABA from brain slices of mouse cerebral cortex. Neurochem Res 14: 405–408

    Google Scholar 

  • Itabashi H, Kandatsu M (1975) Influence of rumen ciliate protozoa on the concentration of free amino acids in the rumen fluids. Jpn J Zootech Sci 46: 600–606

    Google Scholar 

  • Kinzel JJ, Bhattacharjee JK (1979) Role of pipecolic acid in the biosynthesis of lysine inRhodotorula glutinis. J Bacteriol 138: 410–417

    Google Scholar 

  • Lane HA, Ling JR (1979) The in vitro metabolism of 2,6-diaminopimelic acid by rumen micro-organisms. Proc Nutr Soc 38: 80A

  • Lewis D (1955) Amino-acid metabolism in the rumen of the sheep. Br J Nutr 9: 215–230

    Google Scholar 

  • Lewis TR, Emery RS (1962a) Studies of relaive deamination rates of amino acids by rumen microorganisms. J Dairy Sci 45: 765–768

    Google Scholar 

  • Lewis TR, Emery RS (1962b) Intermediate products in the catabolism of amino acids by rumen microorganisms. J Dairy Sci 45: 1363–1368

    Google Scholar 

  • Mason VC, White F (1971) The digestion of bacterial mucopeptide constituents in the sheep. 1. The metabolism of 2,6-diaminopimelic acid. J Agric Sci Camb 77: 91–98

    Google Scholar 

  • Masson HA, Ling JR (1986) The in vitro metabolism of free and bacterially-bound 2,2′-diaminopimelic acid by rumen micro-organisms. J Appl Bacteriol 60: 341–349

    Google Scholar 

  • Meriicks DL, Salsbury RL (1974) Involvement of vitamin B6 in the detiomethylation of methionine by rumen microorganisms. Appl Microbiol 28: 106–111

    Google Scholar 

  • Merricks DL, Salsbury RL (1976) Dethiomethylation of methionine by an extract of rumen protozoa: General substrate specificity. J Anim Sci 42: 955–959

    Google Scholar 

  • Mihalik SJ, Moser HW, Watkins PA, Danks DM, Poulos A, Rhead WJ (1989) Peroxisomal L-pipecolic acid oxidation is deficient in liver from Wellweger syndrome patients. Pediatr Res 25: 548–552

    Google Scholar 

  • Miyata T, Kamata K, Noguchi M, Okano Y, Kase Y (1973) Pharmacological studies on alicyclic amines XV: Intracerebral administration of pipecolic acid (PA). Jpn J Pharmacol 23 [Suppl]: 81

    Google Scholar 

  • Nagamine T, Horikawa Y, Onodera R (1989) A comparison of methionine-S-oxide reductase activities in liver and kidney between cattle and swine. Asian-Australasian J Anim Sci 2: 251–253

    Google Scholar 

  • Nagamine T, Horikawa Y, Takei K, Nagasawa T, Onodera R (1991) Apparent characteristics and activity of methionine-S-oxide reductase in the liver and kidneys of cattle and swine. Anim Sci Technol (Jpn) 62: 1035–1042

    Google Scholar 

  • Nagamine T, Nagasawa T, Onodera R (1992) Purification of methionine sulfoxide reductase from cattle liver. Anim Sci Technol (Jpn) 63: 134–140

    Google Scholar 

  • Nimrick K, Hatfield EE, Kaminski J, Owens FN (1970) Qualitative assessment of supplemental amino acid needs for growing lambs fed urea as the sole nitrogen source. J Nutr 100: 1293–1300

    Google Scholar 

  • NRC (1979) Nutrient requirements of swine. 23. National Academy Press, Washington, DC

    Google Scholar 

  • Ohigashi K, Tsunetoshi A, Ichihara K (1951) The role of pyridoxal in methylmercaptan formation, partial purification and resolution of methionine. Med J Osaka Univ 2: 111–117

    Google Scholar 

  • Onodera R (1986) Contribution of protozoa to lysine synthesis in the in vitro rumen microbial ecosystem. Appl Environ Microbiol 51: 1350–1351

    Google Scholar 

  • Onodera R, Kandatsu M (1969) Occurrence of L-(−)-pipecolic acid in the culture medium of rumen ciliate protozoa. Agric Biol Chem 33: 113–115

    Google Scholar 

  • Onodera R, Kandatsu M (1972) Conversion of lysine to pipecolic acid by rumen ciliate protozoa. Agric Biol Chem 36: 1989–1995

    Google Scholar 

  • Onodera R, Kandatsu M (1973) Synthesis of lysine fromα, ε-diaminopimelic acid by mixed ciliated rumen protozoa. Nature New Biol 244: 31–32

    Google Scholar 

  • Onodera R, Kandatsu M (1974) Formation of lysine fromα, ε-diaminopimelic acid and negligible synthesis of lysine from some other precursors by rumen ciliate protozoa. Agric Biol Chem 38: 913–920

    Google Scholar 

  • Onodera R, Kandatsu M (1975) Catabolism of lysine by mixed rumen bacteria. Agric Biol Chem 39: 1239–1246

    Google Scholar 

  • Onodera R, Koga K (1987) Effect of inhabitation by rumen protozoa on the nutritive value of protein in rumen contents. Agric Biol Chem 51: 1417–1424

    Google Scholar 

  • Onodera R, Migita R (1984) Metabolism of threonine, methionine and the related compounds in mixed rumen ciliate protozoa. J Protozool 32: 326–330

    Google Scholar 

  • Onodera R, Takei K (1986) Methionine sulfoxide in the incubation medium of mixed rumen ciliate protozoa. Agric Biol Chem 50: 767–769

    Google Scholar 

  • Onodera R, Tano H (1980) Diurnal variations of lysine and pipecolate contents and concentration of ciliate protozoa in the rumen. Bull Fac Agr Miyazaki Univ 27: 171–178

    Google Scholar 

  • Onodera R, Ushijima T (1982) Formation of 2-aminobutanoic acid from threonine and methionine by mixed ciliate protozoa. J Protozool 29: 547–550

    Google Scholar 

  • Onodera R, Shinjo T, Kandatsu M (1974) Formation of lysine fromα, ε-diaminopimelic acid contained in rumen bacterial cell walls by rumen ciliate protozoa. Agric Biol Chem 38: 921–926

    Google Scholar 

  • Onodera R, Yamaguchi Y, Morimoto S (1983) Metabolism of arginine, citrulline, ornithine and proline by starved rumen ciliate protozoa. Agric Biol Chem 47: 821–828

    Google Scholar 

  • Purser DB, Beuchler SM (1966) Amino acid composition of rumen organisms. J Dairy Sci 49: 81–84

    Google Scholar 

  • Reddy MC, Bassette R, Ward G, Dunham JR (1967) Relationship of methyl sulfide and flavor score of milk. J Dairy Sci 50: 147–150

    Google Scholar 

  • Richardson CR, Hatfield EE (1978) The limiting amino acids in growing cattle. J Anim Sci 46: 740–745

    Google Scholar 

  • Rothstein M, Saffran E (1963) Lysine biosynthesis in algae. Arch Biochem Biophys 101: 373–377

    Google Scholar 

  • Salsbury RL, Merricks DL (1972) Susceptibility of methionine analogs to dethiomethylation by rumen microorganisms in vitro. J Dairy Sci 55: 710

    Google Scholar 

  • Salsbury RL, Merricks DL (1975) Production of methanethiol and dimethyl sulfide by rumen micro-organisms. Plant Soil 43: 191–209

    Google Scholar 

  • Salsbury RL, Marvil DK, Woodansee CW, Haenlein GFW (1971) Utilization of methionine and methionine hydroxy anlaog by rumen microorganisms in vitro. J Dairy Sci 54: 390–396

    Google Scholar 

  • Scheifinger CC, Russell N, Chalupa W (1976) Degradation of amino acids by pure cultures of rumen bacteria. J Anim Sci 43: 821–827

    Google Scholar 

  • Shockman G, Toennies G (1954) Formation of D-methionine from L- byStreptococcus faecalis. Arch Biochem Biophys 50: 9–17

    Google Scholar 

  • Schutgens RBH, Heymans HSA, Wanders RJA, van den Bosch H. Tager JM (1986) Peroxisomal disorders: A newly recognized group of genetic diseases. Eur J Pediatr 144: 430–440

    Google Scholar 

  • Skoch SA, Schelling GI, Tucker RE, Mitchell GE (1975) Interactions of amino acid degradation by rumen microbes. J Anim Sci 40: 197

    Google Scholar 

  • Smith SI, Boling JA (1984) Lipid coating as a mode of protecting free methionine from ruminal degradation. J Anim Sci 58: 187–193

    Google Scholar 

  • Stadtman TC (1963) Anaerobic degradation of lysine. II. Cofactor requirements and properties of the soluble enzyme system. J Biol Chem 238: 2766–2773

    Google Scholar 

  • Stevenson IL (1979) The effect of L-α-amino-n-butyric acid on growth and production of extracellular isoleucine and valine byEubacterium ruminantium and a related rumen isolate. Can J Microbiol 25: 1394–1400

    Google Scholar 

  • Storm E, Ørskov ER (1984) The nutritive value of rumen micro-organisms in ruminants. 4. The limiting amino acids of microbial protein in growing sheep determined by a new approach. Br J Nutr 52: 613–620

    Google Scholar 

  • Weller RA (1957) The amino acid composition of hydrolysates of microbial preparations from the rumen of sheep. Aust J Biol Sci 10: 384–389

    Google Scholar 

  • Zikakis JP, Salsbury RL (1969) Metabolism of sulfur amino acids by rumen microorganisms. J Dairy Sci 52: 2014–2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onodera, R. Methionine and lysine metabolism in the rumen and the possible effects of their metabolites on the nutrition and physiology of ruminants. Amino Acids 5, 217–232 (1993). https://doi.org/10.1007/BF00805984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00805984

Keywords

Navigation