Skip to main content
Log in

Low molecular weight peptidic fraction in the chromatin from normal and cancer cells: Control of transcription

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

DNA isolated from cell nuclei by intensive deproteinization with chloroform/isoamyl alcohol and phenol extractions contains a low molecular weight peptidic fraction in a quantity of about 20 μg/mg DNA. These peptides were characterized by chromatography on CM-Sephadex, Sephadex G-25, high performance liquid chromatography on μBondapak C18 and amino acid composition. The peptides control transcription in a reconstituted cell-free system with prokaryotic and eukaryotic RNA polymerase and stabilize the structure of double stranded DNA, while increasing its melting point. Their level is markedly decreased (by about 40%) in DNA prepared from tumor cells as compared to normal cell DNA. Transcriptional studies showed only a slightly increased template activity of DNA extracted at pH 9.5 versus DNA extracted at pH 6.0 for DNA preparations from tumor cells. However, there was a marked increase in template activity for DNA preparations treated at pH 9.5 from normal cells-232%, 124%, 97% and 78% for rat liver, mouse liver, mouse thymus and fibroblast L-929 cells, respectively. Also there was no difference in the melting point between these two preparations of DNA from tumor cells; normal cell DNA preparations showed increased melting point of preparations treated at pH 6.5. The data obtained indicate that the loss of low molecular weight peptides from tumor DNA during carcinogenesis is responsible for uncontrolled gene expression observed in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gianfranceschi G.L. Amici D. and Guglielmi L. Biochim. Biophys. Acta 414, 9–19 (1975).

    Google Scholar 

  2. Gianfranceschi G.L. Amici D. and Guglielmi L. Nature 262, 622–623 (1976).

    Google Scholar 

  3. Hillar M. and Przyjemski J. Biochim. Biophys. Acta 564, 246–263 (1979).

    Google Scholar 

  4. Gianfranceschi G.L., Amici D. and Guglielmi L. Mol. Biol. Reports 3, 55–64 (1976).

    Google Scholar 

  5. Amici D. Rossi G.B., Cioe L., Matarese G.P., Dolei A., Guglielmi G.L. and Gianfranceschi G.L. Proc. Natl. Acad. Sci. U.S. 74, 3869–3873 (1977).

    Google Scholar 

  6. Milas L., Hunter N. Basic I., Mason K., Grdina D.J. and Wither H.R. J. Natl. Canc. Inst. 54, 895–903 (1975).

    Google Scholar 

  7. Busch H. in Methods in Enzymology (Colowich S. and Kaplan N.O., eds.) Vol. 12 A, pp. 421–437, Academic Press New York (1974).

    Google Scholar 

  8. Hurwitz J. in Methods in Enzymology (Colowick S. and Kaplan N.O., eds.) Vol. 6, pp. 23–27, Academic Press, New York (1963).

    Google Scholar 

  9. Gianfranceschi G.L., Guglielmi L., Amici D., Bossa F., Barra D. and Petruzzelli R. Mol. Biol. Reports 3, 429–436 (1977).

    Google Scholar 

  10. Seiler N. in Methods in Biochemical Analysis (Glick D., ed.) Vol. 18, pp. 259–337, Interscience Publishers, New York (1970).

    Google Scholar 

  11. Lowry O.H. Rosebrough N.H., Farr A.L. and Randall R. J. Biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  12. Salser J.S. and Balis M.E. Cancer Res. 28, 595–600 (1968).

    Google Scholar 

  13. Salser J.S. and Balis M.E. J. Biol. Chem. 244, 822–828 (1969).

    Google Scholar 

  14. Salser J.S. and Balis M.E. J. Gerontol. 27, 1–9 1972).

    Google Scholar 

  15. Ward D.N. and Putch J.D. (1962) Makromol. Chem. 55, 21–131 (1962).

    Google Scholar 

  16. Torelli U. Eur. J. Cancer 13, 1363–1368 (1977).

    Google Scholar 

  17. Heinrich P.C., Gross V., Northeman W. and Scheurlen M. Rev. Physiol. Biochem. Pharmacol. 81, 101–134 (1978).

    Google Scholar 

  18. Augenlicht L.H., McCormick M. and Lipkin M. Biochemistry 15 3818–3823 (1976).

    Google Scholar 

  19. Raj N.K.B. Ro-Choi T.S. and Busch H. Biochemistry 14, 4380–4385 (1975).

    Google Scholar 

  20. Ukeless J., Dano K., Kellerman G.M. and Reich E. J. Biol. Chem. 249, 4295–4305 (1974).

    Google Scholar 

  21. Hozumi M., Ogawa M., Sugimiura T., Takeuchi T. and Umezawa H. Cancer Res. 32, 1725–1728 (1972).

    Google Scholar 

  22. Troll W., Klassen A. and Janoff A. Science 169, 1211–1213 (1970).

    Google Scholar 

  23. Wigler M. and Weinstein T.B. Nature 259, 232–233 (1976).

    Google Scholar 

  24. Troll W., Meyn M.S. and Rossman T.G. in Mechanisms of Tumor Promotion and Cocarcinogenesis (Slaga T.J. Sivak A. and Boutwell R.K., eds.), pp. 301–312, Raven Press, New York (1978).

    Google Scholar 

  25. Meyn M.S., Rossman T. and Troll W. Proc. Natl. Acad. Sci. U.S. 74, 1152–1156 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gianfranceschi, G.L., Hillar, M., Chan, J.T. et al. Low molecular weight peptidic fraction in the chromatin from normal and cancer cells: Control of transcription. Mol Biol Rep 6, 95–103 (1980). https://doi.org/10.1007/BF00778436

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00778436

Keywords

Navigation