Skip to main content
Log in

Learning disability and impairment of synaptogenesis in HTX-rats with arrested shunt-dependent hydrocephalus

  • Original Papers
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Using HTX-rats with congenital hereditary hydrocephalus, we used neuropathological methods, including quantitative Golgi study and neurobehavioral evaluation, to investigate the following problems. (1) What kind of damage does congenital hydrocephalus cause to developing brain tissue? (2) How much can the damage be repaired by ventriculoperitoneal shunting if performed at 4 weeks of age, enabling 4-week-old hydrocephalic rats to survive beyond sexual maturation? (3) What is the status of learning ability of long-term surviving rats with arrested shunt-dependent hydrocephalus? The findings of our study suggest that congenital hydrocephalus impairs the development and formation of the dendrites and spines of the cerebrocortical neurons. Following ventriculoperitoneal shunting, we confirmed that rats with arrested shunt-dependent hydrocephalus demonstrated learning disability in a light-darkness discrimination test using a Y-maze. The development of the dendrites and spines of the cerebrocortical neurons seemed to take place to some degree after shunting, but normal spine density could not be restored. Also suggested was a possible relationship between learning disability and a decrease in spine density, i.e., impairment of synaptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghajanian GK, Bloom FE (1967) The formation of synaptic junctions in developing rat brain. A quantitative electron microscopic study. Brain Res 6:716–727

    Google Scholar 

  2. Borit A, Sidman RL (1972) New mutant mouse with communicating hydrocephalus and secondary aqueductal stenosis. Acta Neuropathol (Berlin) 21:316–331

    Google Scholar 

  3. Chovanes GI, McAllister JP II, Lamperti AA, Salloto AG, Truex RC Jr (1988) Monoamine alterations during experimental hydrocephalus in neonatal rats. Neurosurgery 22:86–91

    Google Scholar 

  4. Del Bigio MR, Bruni JE (1988) Changes in periventricular vasculature of rabbit brain following induction of hydrocephalus and after shunting. J Neurosurg 69:115–120

    Google Scholar 

  5. Dunnett SB, Low WC, Iversen SD, Stenevi U, Björklund A (1982) Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Res 251:335–348

    Google Scholar 

  6. Eayrs JT, Goodhead B (1959) Postnatal development of the cerebral cortex in the rat. J Anat 93:385–401

    Google Scholar 

  7. Fried A, Shapiro K, Takei F, Kohn I (1987) A laboratory model of shunt-dependent hydrocephalus. Development and biochemical characterization. J Neurosurg 66:734–740

    Google Scholar 

  8. Gellermann LW (1933) Chance of orders of alternating stimuli in visual discrimination experiments. J Genet Psychol 42:207–208

    Google Scholar 

  9. Globus A, Scheibel AB (1966) Loss of dendrite spines as an index of presynaptic terminal patterns. Nature 212:463–465

    Google Scholar 

  10. Globus A, Scheibel AB (1967) The effect of visual deprivation on cortical neurons: a Golgi study. Exp Neurol 19:331–345

    Google Scholar 

  11. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    Google Scholar 

  12. Huttenlocher PR (1979) Synaptic density in human frontal cortex — developmental changes and effects of aging. Brain Res 163:195–205

    Google Scholar 

  13. Kohn DF, Chinookoswong N, Chou SM (1981) A new model of congenital hydrocephalus in the rat. Acta Neuropathol (Berlin) 54:211–218

    Google Scholar 

  14. Kristt DA (1978) Neuronal differentiation in somatosensory cortex of the rat. I. Relationship to synaptogenesis in the first postnatal week. Brain Res 150:467–486

    Google Scholar 

  15. Lewin R (1980) Is your brain really necessary?. Science 210:1232–1234

    Google Scholar 

  16. Markus EJ, Petit TL (1987) Neocortical synaptogenesis, aging and behavior: lifespan development in the motor-sensory system of the rat. Exp Neurol 96:262–278

    Google Scholar 

  17. Matthies M, Rauca CH, Liebmann H (1974) Changes in the acetylcholine content of different brain regions of the rat during a learning experiment. J Neurochem 23:1109–1113

    Google Scholar 

  18. McAllister JP II, Maugans TA, Shah MV, Truex RC Jr (1985) Neuronal effects of experimentally induced hydrocephalus in newborn rats. J Neurosurg 63:776–783

    Google Scholar 

  19. Miller M (1981) Maturation of rat visual cortex. I. A quantitative study of Golgi-impregnated pyramidal neurons. J Neurocytol 10:859–878

    Google Scholar 

  20. Miyaoka M, Ito M, Wada M, Sato K, Ishii S (1988) Measurement of local cerebral glucose utilization before and after V-P shunt in congenital hydrocephalus in rats. Metab Brain Dis 3:125–132

    Google Scholar 

  21. Miyazawa T, Sato K, Nakamura Y, Wada M, Nakagata N, Ishii S (1988) A quantitative Golgi study of cortical pyramidal neurons in congenitally hydrocephalic HTX-rats (in Japanese). Nerv Syst Child 13:263–270

    Google Scholar 

  22. Nakayama DK, Harrison MR, Berger MS, Chinn DH, Halks-Miller M, Edwards MS (1983) Correction of congenital hydrocephalus in utero. I. The model: intracisternal kaolin produces hydrocephalus in fetal lambs and rhesus monkeys. J Pediatr Surg 18:331–338

    Google Scholar 

  23. Peacock WJ (1986) The postnatal development of the brain and its coverings. In: Raimondi AJ, Choux M, Di Rocco C (eds) Head injuries in the newborn and infant. (Principles of pediatric neurosurgery) Springer, New York Berlin Heidelberg, pp 53–66

    Google Scholar 

  24. Purpura DP (1974) Dendritic spine “dysgenesis” and mental retardation. Science 186:1126–1128

    Google Scholar 

  25. Raimondi AJ, Soare P (1974) Intellectual development in shunted hydrocephalic children. Am J Dis Child 127:664–671

    Google Scholar 

  26. Rubin RC, Hochwald GM, Tiell M, Mizutani H, Ghatak N (1976) Hydrocephalus. I. Histological and ultrastructural changes in the pre-shunted cortical mantle. Surg Neurol 5:109–114

    Google Scholar 

  27. Rubin RC, Hochwald GM, Tiell M, Liwnicz BH (1976) Hydrocephalus. II. Cell number and size, and myelin content of the pre-shunted cerebral cortical mantle. Surg Neurol 5:115–118

    Google Scholar 

  28. Rubin RC, Hochwald GM, Tiell M, Epstein F, Ghatak N, Wisniewski H (1976) Hydrocephalus. III. Reconstitution of the cerebral cortical mantle following ventricular shunting. Surg Neurol 5:179–183

    Google Scholar 

  29. Schapiro S, Vukovich KR (1970) Early experience effects upon cortical dendrites: a proposed model for development. Science 167:292–294

    Google Scholar 

  30. Scheibel ME, Scheibel AB (1978) The methods of Golgi. In: Robertson RT (ed) Neuroanatomical research techniques. Academic Press, New York, pp 89–114

    Google Scholar 

  31. Takiguchi H, Ishizuka A, Ikeda Y, Itoh E (1988) The effects of a dibenzoxazepine derivative on learning ability and local cerebral glucose utilization in aged rats (in Japanese). Jpn J Neuropsychopharmacol 10:459–469

    Google Scholar 

  32. Venes JL (1983) Management of intrauterine hydrocephalus, in neurosurgical forum. J Neurosurg 58:793

    Google Scholar 

  33. Volpe BT, Waczek B, Davis HP (1988) Modified T-maze training demonstrates dissociated memory loss in rats with ischemic hippocampal injury. Behav Brain Res 27:259–268

    Google Scholar 

  34. Wada M (1988) Congenital hydrocephalus in HTX-rats: incidence, pathophysiology, and developmental impairment. Neurol Med Chir (Tokyo) 28:955–964

    Google Scholar 

  35. Weller RO, Shulman K (1972) Infantile hydrocephalus: clinical, histological, and ultrastructural study of brain damage. J Neurosurg 36:255–265

    Google Scholar 

  36. Wenzel J, Kammerer E, Joschko R, Joschko M, Kaufmann W, Kirsche W, Matthies H (1977) Der Einfluß eines Lernexperimentes auf die Synapsenanzahl im Hippocampus der Ratte. Elektronenmikroskopische und morphometrische Untersuchumgen. Z Mikrosk Anat Forsch 91:57–73

    Google Scholar 

  37. Wenzel J, Kammerer E, Frotscher M, Joschko R, Joschko M, Kaufmann W (1977) Elektronenmikroskopische und morphometrische Untersuchungen an Synapsen des Hippocampus nach Lernexperimenten bei der Ratte. Z Mikrosk Anat Forsch 91:74–93

    Google Scholar 

  38. Young HF, Nulsen FE, Weiss MH, Thomas P (1973) The relationship of intelligence and cerebral mantle in treated infantle hydrocephalus (IQ potential in hydrocephalic children). Pediatrics 52:38–44

    Google Scholar 

  39. Zilles K, Wree A (1985) Cortex: areal and laminar structure. In: George P (ed) The rat nervous system, vol 1. Academic Press, Australia, pp 375–415

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazawa, T., Sato, K. Learning disability and impairment of synaptogenesis in HTX-rats with arrested shunt-dependent hydrocephalus. Child's Nerv Syst 7, 121–128 (1991). https://doi.org/10.1007/BF00776706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00776706

Key words

Navigation