Skip to main content
Log in

Periodically interspersed repetitive sequences may govern higher-order DNA coiling in chromatin and chromosomes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The interspersed periodic arrangement of repetitive and unique sequences in eukaryotic DNAs is proposed as the underlying molecular basis for higher-order DNA coiling in chromatin and mitotic chromosomes. It is assumed that (i) two types of interspersed repetitive sequences are distributed strictly periodically throughout the genome, splitting the single copy DNA into short and long periods respectively in such a pattern that each long period is composed of a definite number of short periods and repeats (ii) the short and long periods make the turn lengths of the solenoid and supersolenoid structures respectively determing their diameters; (iii) specific proteins interact with each type of repeats making cross ties between nearby repeats of each class helping to form, constrain, and stabilize the solenoid and the supersolenoid structures; (iv) the long period may be equated with the basic chromomere unit. The model predicts: (i) splitting of contiguous genes by inserted repetitive sequences; and (ii) two types of genomes differing in the hierarchy of DNA coiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AdolphK.W., S.M.Cheng & U.K.Laemmli, Cell 12: 805–816 (1977).

    Google Scholar 

  2. AdolphK.W., S.M.Cheng, J.R.Paulson & U.K.Laemmli. Proc. Natl. Acad. Sci. USA 74: 4937–4941 (1977).

    Google Scholar 

  3. AuclairW. Biol. Bull. 128: 169–176 (1965).

    Google Scholar 

  4. BakA.L., J.Zeuthen & F.H.C.Crick. Proc. Natl. Acad. Sci. USA 74: 1595–1599 (1971).

    Google Scholar 

  5. Breathnach R., J.L. Mandel & P. Chambon. Nature 70: 314–318.

  6. CooperK.W. pp. 1–50 in: Biology of Drosophila (M.Demerec, ed.). Wiley, New York (1950).

    Google Scholar 

  7. CrainW.R., E.H.Davidson & R.J.Britten. Cell 4: Chromosoma (Berl.). 59: 1–12 (1976).

    Google Scholar 

  8. DavidsonE.H., W.H.Klein & R.J.Britten. Dev. Biol. 55: 69–84 (1977).

    Google Scholar 

  9. EdenF.C., D.E.Graham, E.H.Davidson & R.J.Britten, Nucl. Acids Res. 4: 1442–1567 (1977).

    Google Scholar 

  10. EfstradiatisA., W.R.Crain, R.J.Britten & E.H.Davidson. Proc. Natl. Acad. Sci. USA 73: 2289–2293 (1976).

    Google Scholar 

  11. FinchJ.T. & A.Klug. Proc. Natl. Acad. Sci. USA 73: 1897–1901 (1976).

    Google Scholar 

  12. FirtelG.A. & K.Kindle. Cell 5 401–411 (1975).

    Google Scholar 

  13. GalauG.A., M.E.Chamberlin, B.R.Hough, R.J.Britten & E.H.Davidson, pp. 200–223 in: Molecular Evolution (F.T.Ayala, ed.). Sinauer Associates, Inc., Sunderland, Mass. (1976).

    Google Scholar 

  14. JeffreysA.J. & R.A.Flavell. Cell 12: 1097–1108 (1977).

    Google Scholar 

  15. KornbergR.D. Science 184: 868–871 (1974).

    Google Scholar 

  16. Makino, S. An atlas of the chromosome number in animals. Iowa State College Press (1951).

  17. ManningJ.E., C.W.Schmid & N.Davidson. Cell 4: 141–155 (1975).

    Google Scholar 

  18. RobertsonM. Nature 269. 648–650 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerman, M.I., Degtyarev, S.V. Periodically interspersed repetitive sequences may govern higher-order DNA coiling in chromatin and chromosomes. Mol Biol Rep 4, 117–120 (1978). https://doi.org/10.1007/BF00775972

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00775972

Keywords

Navigation