Skip to main content
Log in

NADH oxidase of plasma membranes

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

NADH oxidase is a cyanide-resistant and hormone-responsive oxidase intrinsic to the plasma membrane of both plant and animal cells. The activity has many unique characteristics that distinguish it from other oxidases and oxidoreductases of both organelles and internal membranes and from other oxidoreductases of the plasma membrane. Among these are resistance to inhibition by cyanide, catalase, superoxide dismutase, and phenylchloromer-curibenzoate. Activity is stimulated by hormones and growth factors and inhibited by quinone analogs such as piericidin, the flavin antagonist atebrin, and growth inhibiting gangliosides such as GM3. In marked contact to the NADH-ferricyanide oxidoreductase of the plasma membrane, the NADH oxidase is activated by lysophospholipids and fatty acids, products of phospholipase A2 action, in a time-dependent manner suggestive of stabilization of an activated form of the enzyme. The hormone-responsive NADH oxidase of the plasma membrane is not a peroxidase and may function as a terminal oxidase to link transfer of electrons from NADH to oxygen at the plasma membrane. The functional significance of the NADH oxidase of the plasma membrane is unknown but some relationship to growth or growth control is indicated. In both animal and plant plasma membranes, the oxidase is activated by growth factors and hormones to which the cells or tissues of origin have functional hormone or growth factor receptors. In addition, substances that inhibit the oxidase, the associated transmembrane reductase or both, inhibit growth. In transformed cells and tissues, the hormone and growth factor responsiveness of the NADH oxidase is reduced or absent. With human keratinocytes which exhibit an increased sensitivity to the anti-proliferative action of both retinoic acid and calcitriol, the NADH oxidase of the plasma membrane is strongly inhibited by these agents and shows the same increased sensitivity. If transfer of electrons from NADH to oxygen across or within the eukaryotic plasma membrane is an important aspect of growth or growth control, then the hormone- and growth factor-responsive NADH oxidase associated with the plasma membrane could be of fundamental importance. Because of its low basal activity, stimulation by growth factors and hormones, and the inhibition of growth in direct proportion to inhibition of the oxidase, the activity is a candidate as a rate-limiting step in the growth process. Completely unknown is the mechanism whereby NADH oxidization and growth or growth control may be coupled. This, together with further characterization of the activity and the mechanism of loss of control with neoplastic transformation, represent important challenges for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amar-Costesec, A., Wibo, M., Thines-Sempoux, D., Beaufay, H., and Berthet, J. (1974).J. Cell. Biol. 62, 717–745.

    Google Scholar 

  • Asard, H., Caubergs, R., Rnders, D., and DeGreef, J. A. (1987).Plant Sci. 53, 109–119.

    Google Scholar 

  • Atwell, B. J., Walters, I. M., and Greenway, H. (1982).J. Exp. Bot. 33, 1030–1044.

    Google Scholar 

  • Berridge, M. J. (1984).Biochem. J. 220, 345–360.

    Google Scholar 

  • Bremer, E. G., Hakomori, S., Bowen-Pope, D. F., Raines, E., and Ross, R. (1984).J. Biol. Chem. 259, 6818–6825.

    Google Scholar 

  • Bremer, E. G., Schlessinger, J., and Hakomori, S. (1986).J. Biol. Chem. 261, 2434–2440.

    Google Scholar 

  • Brightman, A. O., Barr, R., Crane, F. L., and Morré, D. J. (1988).Plant Physiol. 86, 1264–1269.

    Google Scholar 

  • Crane, F. L., and Barr, R. (1989). InCritical Reviews in Plant Sciences, Vol. 8, CRC Press, Boca Raton, Florida, pp. 273–307.

    Google Scholar 

  • Crane, F. L., Sun, I., Clark, M. G., Grebing, C., and Löw, H. (1985).Biochim. Biophys. Acta 811, 233–264.

    Google Scholar 

  • Crane, F. L., Sun, I. L., Sun, E., and Morré, D. J. (1991). InBiomedical and Clinical Aspects of Coenzyme Q, Vol. 6 (Folkers, K., and Littaru, J. P., eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Crawford, D. R., and Schneider, D. L. (1982).J. Biol. Chem. 257, 6662–6668.

    Google Scholar 

  • Cunningham, C. C., DeChatelet, L. R., Spach, P. I., Parce, J. W., Thomas, M. J., Lees, C. J., Shirley, P. S. (1982).Biochim. Biophys. Acta 682, 430–435.

    Google Scholar 

  • da Costa, M., and Rothenberg, S. P. (1988).Biochim. Biophys. Acta 939, 533–541.

    Google Scholar 

  • Darr, D., Fridovich, I. (1984).Arch. Biochem. Biophys. 232, 562–565.

    Google Scholar 

  • Ellem, K. A. O., and Kay, G. F. (1983).Biochem. Biophys. Res. Commun. 112, 183–190.

    Google Scholar 

  • Gayda, D. P., Crane, F. L., Morré, D. J., and Löw, H. (1977).Proc. Indiana Acad. Sci. 86, 385–390.

    Google Scholar 

  • Goldenberg, H., Crane, F. L., and Morré, D. J. (1979).J. Biol. Chem. 254, 2491–2498.

    Google Scholar 

  • Griffin, D. M. (1968).New Phytol. 67, 561–577.

    Google Scholar 

  • Jarasch, E. D., Kartenbeck, J., Bruder, G., Fink, A., Morré, D. J., and Franke, W. W. (1979).J. Cell. Biol. 80, 37–52.

    Google Scholar 

  • Jelsema, C. L. (1987).J. Biol. Chem. 282, 163–168.

    Google Scholar 

  • Keenan, T. W., Schmid, E., Franke, W. W., and Wiegandt, H. (1975).Exp. Cell. Res. 92, 259–270.

    Google Scholar 

  • Löbler, M., and Klämbt, D. (1985a).J. Biol. Chem. 260, 9848–9853.

    Google Scholar 

  • Löbler, M., and Klämbt, D. (1985b).J. Biol. Chem. 260, 9854–9859.

    Google Scholar 

  • Löbler, M., Simon, K., Hesse, T., and Klämbt, D. (1987). InMolecular Biology of Plant Growth Control (Fox, J. E., and Jacobs, M., eds.), Alan R. Liss, New York, pp. 279–288.

    Google Scholar 

  • Luster, D. G., and Buckhout, T. J. (1989).Plant Physiol. 91, 1014–1019.

    Google Scholar 

  • Lutter, R., van Zwieten, R., Weening, R. S., Hamers, M. H., and Roos, D. (1984).J. Biol. Chem. 259, 9603–9606.

    Google Scholar 

  • McLane, J. A., and Katz, K. (1988).Ann. N.Y. Acad. Sci. 548, 341–343.

    Google Scholar 

  • McLane, J. A., Katz, K., and Abdelkader, N. (1990). InVitro Cell. Dev. Biol. 26, 379–387.

    Google Scholar 

  • Miller, W. M., Wilke, C. R., and Blanch, H. W. (1987).J. Cell. Physiol. 132, 524–530.

    Google Scholar 

  • Møller, I. M., and Bérczi, A. (1985).FEBS Lett. 193, 180–184.

    Google Scholar 

  • Møller, I. M., and Bérczi, A. (1986).Physiol. Plant. 68, 67–74.

    Google Scholar 

  • Morré, D. J., and Key, J. L. (1967). InExperimental Techniques in Developmental Biology (Wilt, F., and Wessels, W., eds.), T. Y. Crowell, New York, pp. 575–593.

    Google Scholar 

  • Morré, D. J., and Crane, F. L. (1990). InOxidoreduction in the Plasma Membrane. Relation to Growth and Transport (Crane, F. L., Morré, D. J., and Löw, H., eds.), Plenum Press, New York.

    Google Scholar 

  • Morré, D. J., Sun, I. L., and Crane, F. L. (1985). InVitamins and Cancer (Myeskins, F. L., and Prasad, K. N., eds.), Humana Press, Clifton, New Jersey, pp. 83–92.

    Google Scholar 

  • Morré, D. J., Navas, P., Penel, C., and Castillo, F. J. (1986).Protoplasma 133, 195–197.

    Google Scholar 

  • Morré, D. J., Crane, F. L., Sun, I. L., and Navas, P. (1987).Ann. N. Y. Acad. Sci. 498, 153–171.

    Google Scholar 

  • Morré, D. J., Brightman, A., Wang, J., Barr, R., and Crane, F. L. (1988). InProc. NATO Advanced Research Workshop, Plasma Membrane Oxidoreductases in Control of Plant and Animal Growth (Crane, F. L., Löw, H., and Morré, D. J., eds.), Alan R. Liss, New York, pp. 45–55.

    Google Scholar 

  • Morré, D. J., Crane, F. L., Eriksson, L. C., Löw, H., and Morré, D. M. (1991a).Biochim. Biophys. Acta.

  • Morre, D. J., Morré, D. M., Creek, K. E., and Pirisi, L. A. (1991b).Biochim. Biophys. Acta.

  • Morré, D. M., Morré, D. J., Reust, T. W., and Sammons, D. W. (1989).J. Cell Biol. 107, 809a (abstract).

  • Mukherjee, S. P., and Lynn, W. S. (1977).Arch. Biochem. Biophys. 184, 69–76.

    Google Scholar 

  • Mukherjee, S. P., Lane, R. H., and Lynn, W. S. (1978).Biochem. Pharmacol. 27, 2589–2594.

    Google Scholar 

  • Navas, P., Sun, I. L., Morré, D. J., and Crane, F. L. (1986).Biochem. Biophys. Res. Commun. 135, 110–115.

    Google Scholar 

  • Norling, B., Glazek, E., Nelson, B. D., and Ernster, L. (1974).Eur. J. Biochem. 47, 475–482.

    Google Scholar 

  • Op den Kamp, G. A. F. (1979).Annu. Rev. Biochem. 48, 47–71.

    Google Scholar 

  • Parkos, C. A., Allen, R. A., Cochrane, C. G., and Jesaitis, A. J. (1987).J. Clin. Invest. 80, 732–742.

    Google Scholar 

  • Petkovich, M., Brand, N. J., Krust, A., and Chambon, P. (1987).Nature (London)330, 444–450.

    Google Scholar 

  • Pupillo, P., Valenti, V., DeLuca, L., and Hertel, R. (1986).Plant Physiol. 80, 384–389.

    Google Scholar 

  • Ramasarma, T., Swaroop, A., MacKellar, W., and Crane, F. L. (1981).J. Bioenerg. Biomembr. 13, 241–253.

    Google Scholar 

  • Scharff, O., Foder, B., and Skibsted, U. (1983).Biochim. Biophys. Acta 730, 295–305.

    Google Scholar 

  • Schwartz, J. P., Passonneau, J. V., Johnson, G. S., and Pastan, I. (1974).J. Biol. Chem. 249, 4138–4143.

    Google Scholar 

  • Shimomura, S. T., Sotobayashi, T., Futai, M., and Fukui, T. (1986).J. Biochem. 99, 1513–1524.

    Google Scholar 

  • Sun, I. L., and Crane, F. L. (1984).Biochem. Int. 9, 299–306.

    Google Scholar 

  • Sun, I. L., and Crane, F. L. (1985).Biochem. Pharmacol. 34, 617–623.

    Google Scholar 

  • Sun, I. L., Morré, D. J., Crane, F. L., Safranski, K., and Croze, E. M. (1984).Biochim. Biophys. Acta 797, 266–275.

    Google Scholar 

  • Sun, I. L., Crane, F. L., Grebing, C., and Löw, H. (1985a).Exp. Cell. Res. 156, 528–536.

    Google Scholar 

  • Sun, I. L., Putnam, J. E., and Crane, F. L. (1985b).Proc. Indiana Acad. Sci. 94, 407–416.

    Google Scholar 

  • Sun, I. L., Navas, P., Crane, F. L., Morré, D. J., and Löw, H. (1987a).Biochem. Int. 14, 119–127.

    Google Scholar 

  • Sun, I. L., Navas, P., Crane, F. L., Morré, D. J., and Löw, H. (1987b).J. Biol. Chem. 262, 15915–15921.

    Google Scholar 

  • Venis, M. A. (1986). InThe receptors (Conn, P. Michael, ed.), Vol. IV, Academic Press, New York, pp. 275–314.

    Google Scholar 

  • Vianello, A., and Macri, F. (1989).Biochim. Biophys. Acta 980, 202–208.

    Google Scholar 

  • Vijaya, S., Crane, F. L., and Ramasarma, T. (1984).Mol. Cell. Biochem. 62, 175–185.

    Google Scholar 

  • Wang, C. S., and Alaupovic, P. (1978).J. Supramol. Struct. 9, 1–14.

    Google Scholar 

  • Wiegandt, H. (1985). InComprehensive Biochemistry, Glycolipids (Nernberger, A., and Van Deenen, L. L. M., eds.), Vol. 10, Elsevier, Amsterdam, pp. 199–260.

    Google Scholar 

  • Williams, R. J. P., and Conear, W. (1986).Nature (London)322, 213–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morré, D.J., Brightman, A.O. NADH oxidase of plasma membranes. J Bioenerg Biomembr 23, 469–489 (1991). https://doi.org/10.1007/BF00771015

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00771015

Key Words

Navigation