Skip to main content
Log in

Effect of strain rate on the nature of failure in static and cyclic loading. Report 1. Formulation of general approaches

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

Abstract

On the basis of the processes of initiation and growth of voids at grain boundaries, the authors develop a physicomechanical model of intergranular cavitation failure of polycrystalline materials. The model can be used to predict endurance in static and cyclic loading structural members in a multiaxial stress state and at a variable strain rate. An approach to describing the effect of this rate on the nature of failure of the material and transition from intragranular to intergranular failure is formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. F. MacLintock and A. Argon, Strain and Fracture of Materials [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  2. Ya. B. Fridman, Mechanical Properties of Metals [in Russian], Vol. 1, Mashinostroenie, Moscow (1974).

    Google Scholar 

  3. L. A. Kopel'man, Brittle Fracture Resistance of Welded Sections [in Russian], Mashinostroenie, Leningrad (1978).

    Google Scholar 

  4. J. F. Nott, Fundamentals of Fracture Mechanics [Russian translation], Metallurgiya, Moscow (1978).

    Google Scholar 

  5. D. Broek, Fundamentals of Fracture Mechanics [in Russian], Vysshaya Shkola, Moscow (1980).

    Google Scholar 

  6. J. Cadek, Creep of Metallic Materials [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  7. R. P. Skelton (ed.), Fatigue of Materials at High Temperatures [Russian translation], Metallurgiya, Moscow (1988).

    Google Scholar 

  8. S. T. Rolfe and J. M. Barsom, “Fracture and fatigue control in structure,’ in: Application of Fracture Mechanics, Prentice-Hall, New Jersey (1977).

    Google Scholar 

  9. H. O. Fuchs and R. I. Stephens, Metal Fatigue in Engineering, Wiley, New York (1980).

    Google Scholar 

  10. H. Liebowitz (ed.), Fracture [Russian translation], Vol. 3, Mir, Moscow (1976).

    Google Scholar 

  11. V. Sklenicka, V. Kucharona, J. Foldyna, and J. Cadek, “Interrelationship between creep deformation and creep rupture in a low alloy CrMoV steel after service,’ in: Creep and Fracture of Engineering Materials and Structures, Institute of Metals, London (1987), pp. 361–370.

    Google Scholar 

  12. Bruce A. Kschinka and J. F. Stubbins, “Creep-fatigue environment interaction in bainitic 2.25 wt. % Cr-1 wt. % Mo steel forging,’ Mater. Sci. Eng.,A110, 89–102 (1989).

    Google Scholar 

  13. B. Wilshire and R. W. Evans (eds.), “Creep and fracture on engineering materials and structures,’ Institute of Metals, London (1987).

    Google Scholar 

  14. J. C. Harthman, G. Eggeler, and B. Ilschner, “Deformation and damage processes in a 12% CrMoV steel under high temperature low cycle fatigue condition in air and vacuum,’ Mater. Sci. Eng.,A110, 103–104 (1989).

    Google Scholar 

  15. K. Bhanu Sankaka Rao, H. Schiffers, H. Schuster, and H. Nickel, “Influence of time and temperature dependent processes on strain controlled low cycle fatigue behavior of alloy 617,’ Met. Trans.,A19, No. 2, 359–371 (1989).

    Google Scholar 

  16. C. Levaillant, J. Grattier, M. Mottot, and A. O. Pineau, “Creep and creep-fatigue intergranular damage in austenitic stainless steel,’ in: ASTM Spec. Techn. Publ., No. 942, ASTM, Philadelphia (1988), pp. 414–437.

    Google Scholar 

  17. J. Polak, J. Helesic, and M. Klesnil,“Effect of elevated temperatures on the low cycle fatigue of 2.25 Cr-1 Mo steel. Part 1. Constant amplitude straining,’ in: ASTM Spec. Techn. Publ., No. 942, ASTM, Philadelphia (1988), pp. 43–57.

    Google Scholar 

  18. R. Pigues, Ph. Bensussan, and A. Pineau, “Crack initiation and growth under creep and fatigue loading of an austenitic stainless steel,’ Nucl. Eng. Design,116, No. 3, 293–306 (1989).

    Google Scholar 

  19. G. P. Karzov, B. Z. Margolin, and V. A. Shvetsova, “Physicomechanical approaches to analysis of the macroscopic fracture criteria. Report I. Fatigue fracture,’ Probl. Prochn., No. 6, 7–14 (1989).

    Google Scholar 

  20. G. P. Karzov, O. V. Kuklina, and B. Z. Margolin, “Physicomechanical approaches to analysis of the macroscopic fracture criteria. Report 2. Ductile fracture,’ Probl. Prochn., No. 8, 3–10 (1989).

    Google Scholar 

  21. G. P. Karzov, B. Z. Margolin, and V. A. Shvetsova, “Physicomechanical approaches to analysis of macroscopic fracture criteria. Report 3. Brittle fracture,’ Probl. Prochn., No. 7, 12–21 (1989).

    Google Scholar 

  22. A. Needleman and J. R. Rice, “Plastic creep flow effect in the diffusive cavitation of grain boundaries,’ Acta Metal.,28, No. 10, 1315–1332 (1980).

    Google Scholar 

  23. I. W. Chen, A. S. Argon, “Diffusive growth of grain boundary cavities,’ Acta Metal.,29, No. 12, 1759–1768 (1981).

    Google Scholar 

  24. N. E. Peyton and K. A. Hamilton (eds.), Superplastic Forming of Structural Alloys [Russian translation], Metallurgiya, Moscow (1985).

    Google Scholar 

  25. N. A. Makhutov, Strain Fracture Criteria and Calculation of the Strength of Structural Members [in Russian], Mashinostroenie, Moscow (1981).

    Google Scholar 

  26. A. F. Gusenkov and P. I. Kotov, Long-Term and Nonisothermal Low-Cycle Strength of Structural Members [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  27. B. I. Cane, “Deformation-induced intergranular creep cavitation in alpha-iron,’ Met. Sci.,12, No. 2, 102–108 (1978).

    Google Scholar 

  28. I. W. Chen and A. S. Argon, “Creep cavitation in 304 stainless steel,’ Acta Metal.,29, No. 10, 1321–1333 (1981).

    Google Scholar 

  29. O. V. Kuklina and B. Z. Margolin, “Physicomechanical model of cavitation failure in creep,’ Probl. Prochn., No. 10, 23–29 (1990).

    Google Scholar 

  30. Raj, “Crack nucleation at grain boundaries in steady and cyclic creep conditions,’ Trans. ASME, J. Basic Eng.,98, No. 2, 41–51 (1976).

    Google Scholar 

  31. M. V. Speight and W. Beere, “Vacancy potential and void growth on grain boundaries,’ Met. Sci.,9, No. 3, 180–191 (1975).

    Google Scholar 

  32. W. Dahl and V. Anton (eds.), Static Strength and Fracture Mechanics of Steels [Russian translation], Metallurgiya, Moscow (1986).

    Google Scholar 

  33. S. Gary and S. M. Bruemmer (eds.), “Grain boundary chemistry and intergranular fracture,’ Trans. Tech. Publ., Switzerland-Germany-UK-USA (1989).

    Google Scholar 

  34. V. Suryanarayanan, K. J. L. Iver, and V. M. Radhakrishnan, “Interaction of low temperature hot corrosion and creep,’ Mater. Sci. Eng.,A112, No. 2, 107–116 (1989).

    Google Scholar 

  35. E. Lenz and N. Weiling, “Strain-induced corrosion cracking of low-alloy steel in LWR systems—interpretation of susceptibility by means of a three-dimensional (T, ɛ, dissolved oxygen) diagram,’ Nucl. Eng. Des.,91, No. 3, 331–344 (1986).

    Google Scholar 

  36. Yu. N. Rabotnov, Creep of Structural Members [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  37. L. M. Kachanov, Fundamentals of Fracture Mechanics, Nauka, Moscow (1974).

    Google Scholar 

  38. A. A. Chizhik and Yu. K. Petrenya, “Kinetic equations of damage in evaluating the service life and reliability of materials under creep conditions,’ Tr. Tsentr. Konstr. Tekhnol. Inst.,194, 27–37 (1982).

    Google Scholar 

  39. A. G. Gulenko, G. P. Karzov, and B. Z. Margolin, “Using the finite element method to solve a viscoplastic problem in static and cyclic loading,’ Sudostroit. Promst. Ser. Materialoved., No. 8, 12–19 (1989).

    Google Scholar 

  40. N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  41. V. I. Makhnenko, “The variance-difference method for analysis of strain fields under nonisothermal loading,’ in: Strain Fields in Low-Cycle Loading [in Russian], Nauka, Moscow (1979), pp. 79–107.

    Google Scholar 

  42. O. K. Zienkiewicz, Finite Element Method in Technology [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  43. V. I. Kostylev and B. Z. Margolin, “Finite element solution of a dynamic elastoplastic problem in fracture mechanics. Report 2. Subcritical crack propagation,’ Probl. Prochn., No. 7, 12–19 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 2, pp. 3–14, February, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolin, B.Z., Shvetsova, V.A. Effect of strain rate on the nature of failure in static and cyclic loading. Report 1. Formulation of general approaches. Strength Mater 23, 107–121 (1991). https://doi.org/10.1007/BF00770799

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00770799

Keywords

Navigation