Skip to main content
Log in

Similarity criteria for the application of fluid models to the study of air pollution meteorology

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Similarity criteria for modeling atmospheric flows in air and water are reviewed. It is shown that five nondimensional parameters plus a set of nondimensional boundary conditions must be matched in model and prototype. The neglect of the Rossby number can lead to serious errors in modeling of diffusion in a prototype with a length scale greater than about five kilometers. The Reynolds number, the Peclet number and the Reynolds-Schmidt product criteria may be neglected if the model flow is of sufficiently high Reynolds number. The Froude number criterion appears to be the most important. The complete specification of boundary conditions is found to be nebulous, but is discussed in some detail. Over-roughening of the model surface may be necessary to satisfy a roughness Reynolds number criterion. Both air and water appear to be suitable fluids to use as modeling media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, M.: 1941, ‘Mountain Clouds, Their Forms and Connected Air Currents’,Part II, Bull. Cent. Meteor. Obs., Tokyo.7, No. 3.

  • Armitt, J. and Counihan, J.: 1968, ‘The Simulation of the Atmospheric Boundary Layer in a Wind Tunnel’,Atmos. Envir. 2, 49–71.

    Google Scholar 

  • Batchelor, G. K.: 1949, ‘Diffusion in a Field of Homogeneous Turbulence. I. Eulerian Analysis’,Austral. J. Sci. Res., Ser. A. 2, 437–50.

    Google Scholar 

  • Batchelor, G. K.: 1953, ‘The Conditions for Dynamical Similarity of Motions of a Frictionless Perfect-Gas Atmosphere’,Quart. J. Roy. Meteorol. Soc. 79, 224–235.

    Google Scholar 

  • Birkhoff, G.: 1950,Hydrodynamics, Princeton Univ. Press, 186 pp.

  • Cermak, J. E. and Peterka, J.: 1966, ‘Simulation of Wind Fields over Point Arguello, Calif. by Wind Tunnel Flow over a Topographic Model’, Report to Navy under Contract N123(61756)34361A (PMR), Colo. State. Univ.

  • Cermak, J. E., Sandborn, V. A., Plate, E. J., Binder, G. H., Chuang, H., Meroney, R. N., and Ito, S.: 1966, ‘Simulation of Atmospheric Motion by Wind Tunnel Flows’, Report to Army under Grant DA-AMC-28-043-G20, Colo. State Univ.

  • Chaudhry, F. H. and Cermak, J. E.: 1971, ‘Simulation of Flow and Diffusion over an Urban Complex’, Paper presented at Conf. on Air Poll. Meteorol., Raleigh, N. C., April 5–9.

  • Corrsin, S.: 1953, ‘Remarks on Turbulent Heat Transfer’,Proc. First Iowa Thermo. Symp., State Univ. of Iowa, Iowa City, pp. 5–30.

    Google Scholar 

  • Corrsin, S.: 1961a, ‘Turbulent Flow’,Amer. Sci. 49, 300–325.

    Google Scholar 

  • Corrsin, S.: 1961b, ‘Theories of Turbulent Dispersion’,Mechanique de la Turbulence, Marseille, France.

  • Corrsin, S.: 1963, ‘Turbulence: Experimental Methods’,Handbuch der Physik,VIII/2, Springer Verlag, Berlin.

    Google Scholar 

  • Corrsin, S.: 1964, ‘Further Generalization of Onsager's Cascade Model for Turbulent Spectra’,Phys. Fluids 7, 1156–9.

    Google Scholar 

  • Csanady, G. T.: 1969, ‘Diffusion in an Ekman Layer’,J. Atmos. Sci. 26, 414–426.

    Google Scholar 

  • Fuquay, J. J., Simpson, C. L., and Hinds, W. T., 1964: ‘Prediction of Environmental Exposures from Sources near the Ground Based on Hanford Experimental Data’,J. Appl. Meteorol. 3, 761–770.

    Google Scholar 

  • Golden, J.: 1961, ‘Scale Model Techniques’, M. S. Thesis, College of Engr., New York Univ.

  • Halitsky, J., Golden, J., Halpern, P., and Wu, P.: 1963, ‘Wind Tunnel Tests of Gas Diffusion from a Leak in the Shell of a Nuclear Power Reactor and from a Nearby Stack’, Geophys. Sci. Lab. Rept. 63-2, Dept. of Met. and Ocean., New York Univ.

    Google Scholar 

  • Hidy, G. M.: 1967, ‘Adventures in Atmospheric Simulation’,Bull. Am. Meteorol. Soc. 48, 143–161.

    Google Scholar 

  • Hinze, J. O.: 1959,Turbulence, McGraw Hill, 586 pp.

  • Högström, U.: 1964, ‘An Experimental Study on Atmospheric Diffusion’,Tellus 16, 205–251.

    Google Scholar 

  • Homma, M.: 1969, ‘Main Research Activities on Air Pollution’, Cent. Res. Inst. of Elect. Power Industry, (Japan), Sept., Unpublished.

  • Jensen, M.: 1958, ‘The Model-Law for Phenomena in a Natural Wind’,Ingeniøren Int. Ed. 2, No. 4.

    Google Scholar 

  • Kampé, J. de Fériet: 1939, ‘Les fonctions aléatoires stationnaires et la théorie statistique de la turbulence homogene’,Ann. Soc. Sci. Brux. 59, 145.

    Google Scholar 

  • Kistler, A. L. and Vrebalovich, J.: 1966, ‘Grid Turbulence at Large Reynolds Numbers’,J. Fluid Mech. 26, 37–47.

    Google Scholar 

  • Kolmogoroff, A. N.: 1941, ‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers’,Compt. Rend. (Doklady) Acad. Sci. U.S.S.R. 30, 301–305.

    Google Scholar 

  • Ludwig, G. R. and Sundaram, T. R.: 1969, ‘On the Laboratory Simulation of Small-Scale Atmospheric Turbulence’, Cornell Aero. Lab. Rept. VC-2740-S-1, Buffalo, N. Y.

  • Lumley, J. L.: 1970,Stochastic Tools in Turbulence, Academic Press, 194 pp.

  • Lumley, J. L. and Panofsky, H. A.: 1964,The Structure of Atmospheric Turbulence, Interscience, 239 p.

  • McVehil, G. E., Ludwig, G. R., and Sundaram, T. R.: 1967, ‘On the Feasibility of Modeling Small Scale Atmospheric Motions’, Cornell Aero. Lab. Rept. ZB-2328-P-1, Buffalo, N.Y.

  • Mery, P.: 1969, ‘Reproduction en Similitude de la Diffusion dans la Couche Limite Atmosphérique’, La Houille Blanche, No. 4 (translated by Air Poll. Tech. Inf. Cent. No. 1104).

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere’,Geophys. Inst. Acad. Sci., U.S.S.R. 24, 163–187.

    Google Scholar 

  • Nemoto, S.: 1968, ‘Similarity Between Natural Local Wind in the Atmosphere and Model Wind in a Wind Tunnel’,Papers Meteorol. Geophys. 19, 131–230.

    Google Scholar 

  • Odell, G. M. and Kovasznay, L. S. G.: 1971, ‘A New Type of Water Channel With Density Stratification’,J. Fluid Mech. 50, 535–544.

    Google Scholar 

  • Pao, Y-H.: 1965, ‘Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers’,Phys. Fluids 8, 1063–1075.

    Google Scholar 

  • Pasquill, F.: 1962, ‘Some observed Properties of Medium-Scale Diffusion in the Atmosphere’,Quart. J. Roy. Meteorol. Soc. 88, 70.

    Google Scholar 

  • Pasquill, F.: 1969, ‘The Influence of the Turning of Wind with Height on Crosswind Diffusion’,Phil. Trans. Roy. Soc. Lond., Ser. A. 265, 173–181.

    Google Scholar 

  • Saffman, P. G.: 1962, ‘The Effect of Wind Shear on Horizontal Spread from an Instantaneous Ground Source’,Quart. J. Roy. Meteorol. Soc. 88, 382–393.

    Google Scholar 

  • Smith, E. G.: 1951, ‘The Feasibility of Using Models for Predetermining Natural Ventilation’, Res. Rep. Tex. Eng. Exp. Stn. 26

  • Smith, F. B.: 1965, ‘The Role of Wind Shear in Horizontal Diffusion of Ambient Particles’,Quart. J. Roy. Meteorol. Soc. 91, 318–329.

    Google Scholar 

  • Snyder, W. H. and Lumley, J. L.: 1971, ‘Some Measurements of Particle Velocity Autocorrelation Functions in a Turbulent Flow’,J. Fluid Mech. 48, 41–71.

    Google Scholar 

  • Sutton, O. G.: 1949,Atmospheric Turbulence, Methuen, 111 pp.

  • Taylor, G. I.: 1921, ‘Diffusion by Continuous Movements’,Proc. Lond. Math. Soc. 20, 196–211.

    Google Scholar 

  • Townsend, A. A.: 1956,The Structure of Turbulent Shear Flow, Cambridge Univ. Press. 315 pp.

  • Tyldesley, J. B. and Wallington, C. E.: 1965, ‘The Effect of Wind Shear and Vertical Diffusion on Horizontal Dispersion’,Quart. J. Roy. Meteorol. Soc. 91, 158–174.

    Google Scholar 

  • Ukeguchi, N., Sakata, H., Okamoto, H., and Ide, Y.: 1967, ‘Study on Stack Gas Diffusion’, Mitsubishi Tech. Bull., No. 52, 1–13.

  • Wyngaard, J. C.: 1967, ‘An Experimental Investigation of the Small-Scale Structure of Turbulence in a Curved Mixing Layer’, Ph. D. Dissertation, Dept. of Mech. Engr., Penn. State Univ.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On assignment from the National Oceanic and Atmospheric Administration, United States Department of Commerce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, W.H. Similarity criteria for the application of fluid models to the study of air pollution meteorology. Boundary-Layer Meteorol 3, 113–134 (1972). https://doi.org/10.1007/BF00769111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769111

Keywords

Navigation