Skip to main content
Log in

Metal effects in the Fischer-Tropsch synthesis: Bond-order-conservation-morse-potential approach

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We have applied the BOC-MP method to theoretically analyze the metal effects in the Fischer-Tropsch (FT) synthesis by calculating the energetics of conceivable elementary steps (the relevant heats of chemisorption and the reaction activation barriers) during CO hydrogenation over the periodic series Fe(110), Ni(111), Pt(111), Cu(111). The basic steps such as dissociation of CO, hydrogenation of carbidic carbon, C-C chain growth by insertion of CH2 versus CO into the metal-alkyl bonds, and chain termination leading to hydrocarbons (alkanes versus α-olefins) or oxygenates are discussed in detail. It is shown that the periodic trends in the ability of metal surfaces to dissociate chemical bonds and those to recombine the bonds are always opposite. In particular, we argue that metallic Fe is necessary to produce the abundance of carbidic carbon from CO but the synthesis of hydrocarbons and oxygenates can effectively proceed only on carbided Fe surfaces which resemble the less active metals such as Pt. More specifically, we project that the C-C chain growth should occur predominantly via CH2 insertion into the metal-alkyl bond and the primary FT products should be α-olefins. These and other model projections are in agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ponec, Catal. Rev. 18 (1978) 151;

    Google Scholar 

  2. A.T. Bell, Catal. Rev. 23 (1981) 23;

    Google Scholar 

  3. P. Biloen and W.M.H. Sachtler, Adv. Catal. 30 (1981) 165;

    Google Scholar 

  4. C.K. Rofer-DePoorter, Chem. Rev. 81 (1981) 447;

    Google Scholar 

  5. C1 Chemistry:Proc. 9th Int. Cong. on Catalysis, eds M.J. Phillips and M. Ternan (The Chemical Institute of Canada, Ottawa, Canada, 1988) Vol. 2.

  6. D.W. Goodman, Acc. Chem. Res. 17 (1984) 194;

    Google Scholar 

  7. P.J. Berlowitz and D.W. Goodman, J. Catal. 108 (1987) 364.

    Google Scholar 

  8. M.A. Vannice, J. Catal. 50 (1977) 228;

    Google Scholar 

  9. K. Klier, Adv. Catal. 31 (1982) 241.

    Google Scholar 

  10. M. Ichikawa, A.J. Lang, D.F. Schriver and W.M.H. Sachtler, J. Am. Chem. Soc. 107 (1985) 7216.

    Google Scholar 

  11. E. Shustorovich, Surf. Sci. Rep. 6 (1986) 1;

    Google Scholar 

  12. E. Shustorovich, Acc. Chem. Res. 21 (1988) 183;

    Google Scholar 

  13. E. Shustorovich, J. Mol. Catal. 54 (1989) 301;

    Google Scholar 

  14. E. Shustorovich, Adv. Catal. 37 (1990).

  15. E. Shustorovich and A.T. Bell, J. Catal. 113 (1988) 341;

    Google Scholar 

  16. A.T. Bell and E. Shustorovich, J. Catal. 121 (1990) 1.

    Google Scholar 

  17. E. Shustorovich and A.T. Bell, Surf. Sci. 205 (1988) 492;

    Google Scholar 

  18. A.T. Bell and E. Shustorovich, Surf. Sci., in press.

  19. T.J. Vink, O.L.J. Gijzeman and J.W. Geus, Surf. Sci. 150 (1985) 14.

    Google Scholar 

  20. L. Whitman, L.J. Richter, B.A. Gurney, J.S. Villarubia and W. Ho, J. Chem. Phys. 90 (1989) 2050.

    Google Scholar 

  21. R. Hall, J. Phys. Chem. 91 (1987) 1007.

    Google Scholar 

  22. See, for example, a discussion in: A.F.H. Wieler, G.W. Koebrugge and J.W. Geus, J. Catal. 121 (1990) 375.

    Google Scholar 

  23. H.J. Krebs, H.P. Bonzel and G. Gafner, Surf. Sci. 88 (1979) 269.

    Google Scholar 

  24. R.C. Brady and R. Pettit, J. Am. Chem. Soc. 102 (1980) 6181; 103 (1981) 1287.

    Google Scholar 

  25. See, for example: (a) J.A. Baker and A.T. Bell, J. Catal. 78 (1982) 165;

    Google Scholar 

  26. A.T. Bell, ref. [1e] Vol. 5, p. 134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shustorovich, E. Metal effects in the Fischer-Tropsch synthesis: Bond-order-conservation-morse-potential approach. Catal Lett 7, 107–118 (1990). https://doi.org/10.1007/BF00764494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00764494

Navigation