Skip to main content
Log in

Identification of a crotoxin-binding protein in membranes from guinea pig brain by photoaffinity labeling

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Crotoxin is a neurotoxic phospholipase A2 capable of blocking synaptic transmission by inhibiting the release of neurotransmitters. The photoaffinity labeling technique was used to identify the neural membrane molecules involved in the binding of crotoxin. A photoactivatable, radioactive derivative of crotoxin was synthesized by reacting crotoxin withN-hydroxysuccinimidyl-4-azidobenzoate and with Na[125I]. Photoirradiation of synaptosomes from guinea pig brains in the presence of the crotoxin derivative resulted in the formation of a major radioactive conjugate of 100,000 daltons as revealed by autoradiography of a sodium dodecyl sulfate-polyacrylamide gel electrophoretic pattern. Pretreatment of the synaptosomes with trypsin,Staphylococcus aureus protease, or papain prevented the formation of this conjugate. The conjugate was not detected when plasma membranes from several nonneural tissues replaced the brain synaptosomes. Unmodified crotoxin inhibited the formation of this adduct with an IC50 of about 10−8 M. Mojave toxin, caudoxin, notexin,Naja naja PLA, and taipoxin also inhibited adduct formation with different potencies, while β-bungarotoxin and pancreatic PLA were ineffective. We concluded that an 85,000-dalton protein is the major component responsible for the binding of crotoxin to synaptosomal membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aird, S. D., Kaiser, I. I., Lewis, R. V., and Kruggel, W. G. (1985).Biochemistry 24, 7054–7058.

    Google Scholar 

  • Aird, S. D., Kaiser, I. I., Lewis, R. V., and Kruggel, W. G. (1986).Biochemistry 249, 296–300.

    Google Scholar 

  • Bon, C., Changeux, J. P., Jeng, T. W., and Fraenkel-Conrat, H. (1979).Eur. J. Biochem. 99, 471–481.

    Google Scholar 

  • Booth, A. G., and Kenny, A. J. (1976).J. Cell Sci. 21, 449–463.

    Google Scholar 

  • Breithaupt, H. (1976).Naunyn-Schmiedeberg's Arch. Pharmacol. 292, 271.

    Google Scholar 

  • Buckland, B. R., Howell, R. D., Richards, C. R., and Smith, B. (1985).Biochem. J. 225, 753–760.

    Google Scholar 

  • Cate, R. L., and Bieber, A. L. (1978).Arch. Biochem. Biophys. 189, 397.

    Google Scholar 

  • Fohlman, J., Eaker, D., Karlsson, E., and Thesleff, S. (1976).Eur. J. Biochem. 68, 457–469.

    Google Scholar 

  • Hanley, M. R., Eterovic, V. A., Hawkes, S. P., Hebert, A. J., and Bennett, E. L. (1977).Biochemistry 16, 5840–5849.

    Google Scholar 

  • Hawgood, B. J., and Smith, J. W. (1977).Br. J. Pharmacol. 61, 597–606.

    Google Scholar 

  • Hazum, E. (1983).Methods Enzymol. 103, 58–71.

    Google Scholar 

  • Hendon, R. A., and Fraenkel-Conrat, H. (1971).Proc. Natl. Acad. Sci. USA 68, 1560–1563.

    Google Scholar 

  • Hendon, R. A., and Fraendel-Conrat, H. (1976).Toxicon 14, 285–289.

    Google Scholar 

  • Howard, B. C., and Gundersen, C. G., Jr. (1980).Annu. Rev. Pharmacol. Toxicol. 20, 307–336.

    Google Scholar 

  • Hunter, W. M., and Greenwood, F. C. (1962).Nature (London)194, 495–496.

    Google Scholar 

  • Iyengar, R., and Herberg, J. T. (1984).J. Biol. Chem. 259, 5222–5229.

    Google Scholar 

  • Ji, T. H. (1977).J. Biol. Chem. 252, 1566–1570.

    Google Scholar 

  • Lo, T. B., Chen, Y. H., and Lee, C. Y. (1966).J. Chinese Chem. Soc. 13, 25.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Neville, D. M. (1960).J. Biophys. Biochem. Cytol. 8, 413.

    Google Scholar 

  • Neville, D. M., Jr. (1971).J. Biol. Chem. 246, 6328–6334.

    Google Scholar 

  • Othman, I. B., Spokes, J. W., and Dolly, J. O. (1982).Eur. J. Biochem. 128, 267–276.

    Google Scholar 

  • Rehm, H., and Betz, H. (1982).J. Biol. Chem. 257, 10015–10022.

    Google Scholar 

  • Rehm, H., and Betz, H. (1983).EMBO J. 2, 1119–1122.

    Google Scholar 

  • Rubsamen, K., Breithaupt, H., and Habermann, E. (1971).Naunyn-Schmiedeberg's Arch. Exp. Pathol. Pharmakol. 270, 274–288.

    Google Scholar 

  • Slotta, K., and Fraenkel-Conrat, H. (1938).Ber. Dtsch. Chem. Ges. 71, 1076–1081.

    Google Scholar 

  • Steck, T. L., Weinstein, R. S., Strauss, J. H., and Wallach, D. F. H. (1970).Science 168, 255.

    Google Scholar 

  • Tzeng, M.-C. (1983).Anal. Biochem. 128, 412–414.

    Google Scholar 

  • Tzeng, M.-C., Hseu, M. J., Yang, J. H., and Guillory, R. J. (1986).J. Protein Chem. 5, 221–228.

    Google Scholar 

  • Viljeon, C. C., Botes, D. P., and Kruger, H. (1982).Toxicon 20, 715–737.

    Google Scholar 

  • Vita-Brazil, O. (1972).J. Formosan Med. Assoc. 71, 394–400.

    Google Scholar 

  • Whittaker, V. P. (1959).Biochem. J. 72, 694–706.

    Google Scholar 

  • Wong, M. M., Robertson, N. P., and Horowitz, J. (1978).Biochem. Biophys. Res. Commun. 84, 158–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Department of Biochemistry and Biophysics, University of Hawaii School of Medicine, Honolulu, Hawaii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hseu, M.J., Guillory, R.J. & Tzeng, MC. Identification of a crotoxin-binding protein in membranes from guinea pig brain by photoaffinity labeling. J Bioenerg Biomembr 22, 39–50 (1990). https://doi.org/10.1007/BF00762844

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762844

Key Words

Navigation