Skip to main content
Log in

Magnesium transport by mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The pathways for the uptake and extrusion of Mg2+ by mitochondria are not well defined. the present evidence suggests that uptake occurs by nonspecific diffusive pathways in response to elevated membrane potential. There is disagreement as to some of the properties of Mg2+ efflux from mitochondria, but the reaction resembles K+ efflux in many ways and may occur in exchange for H+. Matrix free magnesium ion concentration, [Mg2+], can be measured using fluorescent probes and is set very close to cytosol [Mg2+] by a balance between influx and efflux and by the availability of ligands, such as Pi. There are indications that matrix [Mg2+] may be under hormonal control and that it contributes to the regulation of mitochondrial metabolism and transport reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akerman, K. E. O. (1981).J. Bioenerg. Biomembr. 13 133–139.

    Google Scholar 

  • Altschuld, R. A., Hohl, C. M., Castillo, L. C., Garleb, A. A., Starling, R. C., and Brierley, G. P. (1992).Am. J. Physiol. 262 H1699-H1704.

    Google Scholar 

  • Altschuld, R. A., Jung, D. W., Phillips, R. M., Narayan, P., Castillo, L. C., Whitaker, T. E., Hensley, J., Hohl, C. M., and Brierley, G. P. (1994).Am. J. Physiol. 266 H1103-H1110.

    Google Scholar 

  • Aprille, J. R. (1993).J. Bioenerg. Biomembr. 25 473–481.

    Google Scholar 

  • Baysal, K., Jung, D. W., Gunter, K. K., Gunter, T. E., and Brierley, G. P. (1994).Am. J. Physiol. 266 C800-C808.

    Google Scholar 

  • Birch, N. J., ed. (1993).Magnesium and the Cell, Academic Press, New York.

    Google Scholar 

  • Bogucka, K., and Wojtczak, L. (1971).Biochem. Biophys. Res. Commun. 44 1330–1338.

    Google Scholar 

  • Bond, M., Vadasz, G., Somlyo, A. V. and Somlyo, A. P. (1987).J. Biol. Chem. 262 15630–15636.

    Google Scholar 

  • Brierley, G. P., Bachmann, E., and Green, D. E. (1962).Proc. Natl. Acad. Sci. USA. 48 1928–1935.

    Google Scholar 

  • Brierley, G. P., Murer, E., Bachmann, E., and Green, D. E. (1963).J. Biol. Chem. 238 3482–3489.

    Google Scholar 

  • Brierley, G. P., Hunter, G. R., and Jacobus, W. E. (1967).J. Biol. Chem. 242 2192–2198.

    Google Scholar 

  • Brierly, G. P., Davis, M., and Jung, D. W. (1987).Arch. Biochem. Biophys. 253 322–332.

    Google Scholar 

  • Brierley, G. P., Davis, M. H., and Jung, D. W. (1988).J. Bioenerg. Biomembr. 264 417–427.

    Google Scholar 

  • Brown, G. C., and Brand, M. D. (1986).Biochem. J. 234 75–81.

    Google Scholar 

  • Chacon, E., Reece, J. M., Nieminen, A.-L., Zahrebelski, G., Herman, B., and Lemasters, J. J. (1994).Biophys. J. 66 942–952.

    Google Scholar 

  • Corkey, B. E., Duszynski, J., Rich, T. L., Matschinsky, B., and Williamson, J. R. (1986).J. Biol. Chem. 261 2567–2574.

    Google Scholar 

  • Crompton, M., Capano, M., and Carafoli, E. (1976).Biochem. J. 13 735–742.

    Google Scholar 

  • Davis, M. H., Altschuld, R. A., Jung, D. W., and Brierley, G. P. (1987).Biochem. Biophys. Res. Commun. 149 40–45.

    Google Scholar 

  • Diwan, J. J. (1988).Biochim. Biophys. Acta. 895 155–165.

    Google Scholar 

  • Diwan, J. J., Daze, M., Richardson, R., and Aronson, D. (1979).Biochemistry 18 2590–2595.

    Google Scholar 

  • Flatman, P. W. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 197–216.

    Google Scholar 

  • Garlid, K. D. (1980).J. Biol. Chem. 255 11273–11279.

    Google Scholar 

  • Garlid, K. D. (1988). InIntegration of Motochondrial Function (Lemasters, J.J., Hackenbrock, C. R., Thurman, R. G., and Westerhoff, H. V., eds.), Plenum Press, New York, pp. 257–276.

    Google Scholar 

  • Grubbs, R. D., and Maguire, M. E. (1986).J. Biol. Chem. 261 12550–12554.

    Google Scholar 

  • Grubbs, R. D., Snavely, M. D., Hmiel, S. P., and Maguire, M. E. (1989).Method. Enzymol. 173 546–563.

    Google Scholar 

  • Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 258 C755-C786.

    Google Scholar 

  • Gunter, T. E., Restrepo, D., and Gunter, K. K. (1988).Am. J. Physiol. 255 C304-C310.

    Google Scholar 

  • Gunther, T., and Vorman, J. (1992).FEBS Lett. 297 132–134.

    Google Scholar 

  • Gupta, R. K., Gupta, P., and Moore, R. D. (1984).Annu. Rev. Biophys. Bioeng. 13 221–246.

    Google Scholar 

  • Haugland, R. P. (1992).Handbook of Fluorescence Probes and Research Chemicals, 5th edn., Molecular Probes Inc., Eugene, Oregon.

    Google Scholar 

  • Headrick, J. P., and Willis, R. J. (1991).J. Mol. Cell. Cardiol. 23 991–999.

    Google Scholar 

  • Hille, B. (1984).Ionic Channels of Excitable Membranes, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Hutson, S. M., Berkich, D. A., Williams, G. D., LaNoue, K. F., and Briggs, R. W. (1989).Biochemistry 28 4325–4332.

    Google Scholar 

  • Jung, D. W., and Brierley, G. P. (1986).J. Biol. Chem. 261 6408–6415.

    Google Scholar 

  • Jung, D. W., and Brierley, G. P. (1992)Magnesium Trace Elem. 10 151–164.

    Google Scholar 

  • Jung, D. W., Davis, M.H., and Brierley, G. P. (1989).Anal. Biochem. 178 348–354.

    Google Scholar 

  • Jung, D. W., Apel, L., and Brierley, G. P. (1990).Biochemistry 29 4121–4128.

    Google Scholar 

  • Kun, E. (1976).Biochemistry 15 2328–2336.

    Google Scholar 

  • Lattanzio, F. A., Jr., and Bartschat, D. K. (1991).Biochem. Biophys. Res. Commun. 177 91–194.

    Google Scholar 

  • Levy, L. A., Murphy, E., Raju, B., and London, R. E. (1988).Biochemistry 27 4041–4048.

    Google Scholar 

  • Lin, J., Pan, L., and Chen, S. I. (1993).J. Biol. Chem. 268 22210–22214.

    Google Scholar 

  • London, R. E. (1991).Annu. Rev. Physiol. 53 241–258.

    Google Scholar 

  • Maguire, M. (1990).Met. Ions Biol. Syst. 26 135–153.

    Google Scholar 

  • Maguire, M. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 157–176.

    Google Scholar 

  • Marfella, C., Romani, A., and Scarpa, A. (1994).Biophys. J. 66, A333.

  • Masiakos, P. T., Williams, G. D., Berkich, D. A., Smith, M. B., and LaNoue, K. F. (1991).Biochemistry 30 8351–8357.

    Google Scholar 

  • Masini, A., Ceccarelli-Stanzari, D., and Muscatello, V. (1983).J. Bioenerg. Biomembr. 15 217–234.

    Google Scholar 

  • McGuigan, J. A. S., Buri, A., Chen, S., Illner, D. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 91–120.

    Google Scholar 

  • Mitchell, P. (1966).Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research Ltd., Bodwin.

    Google Scholar 

  • Mitchell, P. (1968).Chemiosmotic Coupling and Energy Transduction, Glynn Research, Ltd., Bodmin.

    Google Scholar 

  • Morelle, B., Salmon, J.-M., Virgo, J., and Viallet, P. (1994).Anal. Biochem. 218 170–176.

    Google Scholar 

  • Mota de Freitas, D., and Dorus, E. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 51–79.

    Google Scholar 

  • Murphy, E., Freudenrich, C. C., and Liberman, M. (1991).Annu. Rev. Physiol. 53 273–287.

    Google Scholar 

  • Nosek, M. T., Dransfield, D. T., and Aprille, J. R. (1990).J. Biol. Chem. 265 8444–8450.

    Google Scholar 

  • Raju, B., Murphy, E., Levy, L. A., Hall, R. D., and London, R. E. (1989).Am. J. Physiol. 256 C540-C548.

    Google Scholar 

  • Romani, A., and Scarpa, A. (1992).Arch. Biochem. Biophys. 298 1–12.

    Google Scholar 

  • Romani, A., Dowell, E., and Scarpa, A. (1991).J. Biol. Chem. 266 24376–24384.

    Google Scholar 

  • Romani, A., Marfella, C., and Scarpa, A. (1993a).Circ. Res. 72 1139–1148.

    Google Scholar 

  • Romani, A., Marfella, C., and Scarpa, A. (1993b).J. Biol. Chem. 268 15489–15495.

    Google Scholar 

  • Rugolo, M., and Zoccarato, F. (1984).J. Neurochem. 42 1127–1130.

    Google Scholar 

  • Rutter, G. A., Osbaldeston, N. J., McCormack, J. G., and Denton, R. M. (1990).Biochem. J. 271 627–634.

    Google Scholar 

  • Scarpa, A. (1979).Method. Enzymol. 56 301–338.

    Google Scholar 

  • Schuster, S., and Olson, M. S. (1974).J. Biol. Chem. 249 7151–7158.

    Google Scholar 

  • Senior, A. E., (1979).J. Biol. Chem. 254 11319–11322.

    Google Scholar 

  • Sigel, H., and Sigel, A., eds. (1990).Metal Ions in Biological Systems Vol. 26,Compendium on Magnesium and Its Role in Biology, Nutrition, and Physiology, Marcel Dekker, New York.

    Google Scholar 

  • Siliprandi, D., Toninello, A., Zoccarato, F., Rugolo, M., and Siliprandi, N. (1978).J. Bioenerg. Biomembr. 10 1–11.

    Google Scholar 

  • Silverman, H. S., Di Lisa, F., Hui, R. C., Miyata, H., Sollott, S. J., Hansford, R. G., Lakatta, E. G., and Stern, M. D. (1994).Am. J. Physiol. 266 C222-C233.

    Google Scholar 

  • Szmacinski, H., and Lakowicz, J. R. (1993).Biophys. J. 64, A108.

    Google Scholar 

  • Veloso, D., Guynn, R. D., Oskarsson, M., and Veech, R. L. (1973).J. Biol. Chem. 248 4811–4819.

    Google Scholar 

  • White, R. E., and Hartzell, H. C. (1989).Biochem. Pharmacol. 38 859–867.

    Google Scholar 

  • Williams, R. J. P. (1993). InMagnesium and the Cell, (Birch, N. J., ed.), Academic Press, New York, pp. 15–30.

    Google Scholar 

  • Wolf, F. I., DiFrancesco, A., and Cittadini, A. (1994).Arch Biochem. Biophys. 308 335–341.

    Google Scholar 

  • Zhang, G. H., and Melvin, J. E. (1992).J. Biol. Chem. 267 20721–20727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, D.W., Brierley, G.P. Magnesium transport by mitochondria. J Bioenerg Biomembr 26, 527–535 (1994). https://doi.org/10.1007/BF00762737

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762737

Keywords

Navigation