Skip to main content
Log in

On bianchi type-I vacuum solutions inR+R 2 theories of gravitation. I. The isotropic case

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

From a LagrangianL= (1/κ)(-g)1/2[R/2+l2(αR ik R ik+βR 2)] one obtains fourth-order field equations for the metrical tensorg ik. Inserting a 3-flat Robertson-Walker line element, the set of their vacuum solutions will be enumerated completely. The qualitative behavior, and especially the influence of thel 2-terms (which is possibly necessary for the renormalization of quantum gravity) in certain stages of evolution follow from a phase plane analysis. Depending on the sign of coupling, one obtains either exponentially increasing or oscillating solutions at late times as well as special solutions without an initial singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl, H. (1919).Ann. Phys. Leipzig,59, 101.

    Google Scholar 

  2. Bach, R. (1921).Math. Zeitschr.,9, 110.

    Google Scholar 

  3. Buchdahl, H. (1962).Nuovo Cimento,123, 141.

    Google Scholar 

  4. Pechlaner, E., and Sexl, R. (1966).Commun. Math. Phys.,2, 165.

    Google Scholar 

  5. Trader, H.-J. (1975).Ann. Phys. Leipzig,32, 383.

    Google Scholar 

  6. De Witt, B. S. (1975).Phys. Rep.,19C, 295.

    Google Scholar 

  7. Stelle, K. S. (1977).Phys. Rev. D,16, 953.

    Google Scholar 

  8. Fischetti, M. V., Hartle, J., and Hu, B. (1979).Phys. Rev. D,20, 1757.

    Google Scholar 

  9. Gurovich, V. T., and Starobinsky, A. A. (1979).Zh. Eksp. Teor. Fiz.,77, 1683 [(1979):Sov. Phys.-JETP,50, 844].

    Google Scholar 

  10. Tomita, K., Azuma, T., and Nariai, H. (1978).Progr. Theor. Phys.,60, 403.

    Google Scholar 

  11. Rusmaikin, T. V., and Rusmaikin, A. A. (1969).Zh. Eksp. Teor. Fiz. 57, 680 [(1970):Sov. Phys.-JETP,30, 372]; Rusmaikin, A. A. (1977).Astrofizika,13, 345.

    Google Scholar 

  12. Starobinsky, A. A. (1980).Phys. Lett. B,91, 99.

    Google Scholar 

  13. Starobinsky, A. A. (1982). InQuantum Gravity (Proceedings) M. A. Markov, ed. (Inst. of Nucl. Res., Moscow), p. 58.

    Google Scholar 

  14. Macrae, K. I., and Riegert, R. J. (1981).Phys. Rev. D,24, 2555.

    Google Scholar 

  15. Frenkel, A., and Brecher, K. (1982).Phys. Rev. D,26, 368.

    Google Scholar 

  16. Kerner, R. (1982).Gen. Rel. Grav.,14, 453.

    Google Scholar 

  17. Swanson, C. A. (1968).Comparison and Oscillation Theory of Linear Differential Equations (Academic Press, New York).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, V., Schmidt, H.J. On bianchi type-I vacuum solutions inR+R 2 theories of gravitation. I. The isotropic case. Gen Relat Gravit 17, 769–781 (1985). https://doi.org/10.1007/BF00762626

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762626

Keywords

Navigation