Skip to main content
Log in

Influence of 8-azido-ATP and other anions on the activity of cytochromec oxidase

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The effect of ATP and other anions on the kinetics of cytochromec oxidation by reconstituted bovine heart cytochromec oxidase was investigated. The following results were obtained: (1) ATP and other polyvalent anions increase theK m for cytochromec and theV max (if assayed by the photometric method). The magnitude of the effect is proportional to the charge of the anion as follows from the series of increasing effectiveness: Pi<AMP<ADP<PPi<ATP<PPPi. (2) The kinetic effects are obtained in the millimolar physiological concentration range. (3) The kinetic changes are not saturated at high concentrations. (4) A specific interaction site for ATP at the cytosolic domain of the enzyme is concluded from the increase ofK m for cytochromec after photolabelling of proteoliposomes with 8-azido-[γ-32P]-ATP, which is protected by ATP but not by ADP. (5) No specific “binding site” for ATP could be identified by photolabelling with 8-azido-[γ-32P]-ATP. The labelling is only partly protected by ATP or ADP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCP:

carbonylcyanide-m-chlorophenylhydrazone

TMPD:

N,N,N′,N′-tetramethyl-1,4-phenylenediamine dihydrochloride

8-N3-ATP:

8-azido-adenosine-5′-triphosphate

References

  • Berden, J. A., Van Dongen, M. B. M., Sloothaak, J. B., and Hartog (1985). InAchievements and Perspectives of Mitochondrial Research, Vol. I:Bioenergetics (Quagliariello, E., Slater, E. C., Palmieri, F., Saccone, C., and Kroon, A. M., eds.), Elsevier, Amsterdam, pp. 257–267.

    Google Scholar 

  • Bisson, R., Schiavo, G., and Montecucco, C. (1987).J. Biol. Chem. 262, 5992–5998.

    Google Scholar 

  • Büge, U., and Kadenbach, B. (1986).Eur. J. Biochem. 161, 383–390.

    Google Scholar 

  • Casey, R. P., Ariano, B. H., and Azzi, A. (1982).Eur. J. Biochem. 122, 313–318.

    Google Scholar 

  • Corthesy, B. E., and Wallace, J. A. (1986).Biochem. J. 236, 359–364.

    Google Scholar 

  • Ferguson, S. J. (1985).Biochim. Biophys. Acta 811, 47–95.

    Google Scholar 

  • Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1976).J. Biol. Chem. 251, 1104–1115.

    Google Scholar 

  • Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1978).J. Biol. Chem. 253, 149–159.

    Google Scholar 

  • Heaton, G. M., Wagenvoord, R. J., Kemp, A., and Nicholls, D. G. (1978).Eur. J. Biochem. 82, 515–521.

    Google Scholar 

  • Hüther, F.-J., and Kadenbach, B. (1986).FEBS Lett. 207, 89–94.

    Google Scholar 

  • Hüther, F.-J., and Kadenbach, B. (1987).Biochem. Biophys. Res. Commun. 147, 1268–1275.

    Google Scholar 

  • Kadenbach, B. (1986).J. Bioenerg. Biomembr. 18, 39–54.

    Google Scholar 

  • Kadenbach, B., Jarausch, J., Hartmann, R., and Merle, P. (1983).Anal. Biochem. 129, 517–521.

    Google Scholar 

  • Kadenbach, B., Stroh, A., Ungibauer, M., Kuhn-Nentwig, L., Büge, U., and Jarausch, J. (1986).Methods Enzymol. 126, 32–45.

    Google Scholar 

  • Kagawa, Y., and Racker, E. (1971).J. Biol. Chem. 256, 5477–5487.

    Google Scholar 

  • Koppenol, W. H., and Margoliash, E. (1982).J. Biol. Chem. 257, 4426–4437.

    Google Scholar 

  • Kuhn-Nentwig, L., and Kadenbach, B. (1985).Eur. J. Biochem. 149, 147–158.

    Google Scholar 

  • Mitchell, P. (1961).Nature (London)191, 144–148.

    Google Scholar 

  • Montecucco, C., Schiavo, G., and Bisson, R. (1986).Biochem. J. 234, 241–243.

    Google Scholar 

  • Osheroff, N., Koppenol, W. H., and Margoliash, E. (1978). InFrontiers of Biological Energetics (Dutton, P. L., Leigh, J. S., and Scarpa, A., eds.), Academic Press, New York, pp. 439–449.

    Google Scholar 

  • Osheroff, N., Brautigan, D. L., and Margoliash, E. (1980).Proc. Natl. Acad. Sci. USA 77, 4439–4443.

    Google Scholar 

  • Rigoulet, M., Guerin, B., and Denis, M. (1987).Eur. J. Biochem. 168, 275–279.

    Google Scholar 

  • Roberts, H., and Hess, B. (1977).Biochim. Biophys. Acta 462, 215–234.

    Google Scholar 

  • Rottenberg, H. (1978).FEBS Lett. 94, 295–298.

    Google Scholar 

  • Rottenberg, H. (1985).Mod. Cell Biol. 4, 47–83.

    Google Scholar 

  • Schäfer, H.-J., Scheurich, P., and Dose, K. (1978).Liebigs Ann. Chem. 2, 1749–1753.

    Google Scholar 

  • Slater, E. C., Berden, J. A., and Herweijer, M. A. (1985).Biochim. Biophys. Acta 811, 217–231.

    Google Scholar 

  • Stellwagen, E., and Shulman, R. G. (1973).J. Mol. Biol. 75, 683–695.

    Google Scholar 

  • Westerhoff, H. V., Melandri, B. A., Venturoli, G., Azzone, G. F., and Kell, D. B. (1984).Biochim. Biophys. Acta 768, 257–292.

    Google Scholar 

  • Zhang, Y.-Z., Georgevich, G., and Capaldi, R. A. (1984).Biochemistry 23, 5616–5621.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Friedhelm Schneider on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüther, FJ., Berden, J. & Kadenbach, B. Influence of 8-azido-ATP and other anions on the activity of cytochromec oxidase. J Bioenerg Biomembr 20, 503–516 (1988). https://doi.org/10.1007/BF00762206

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762206

Key Words

Navigation