Skip to main content
Log in

Internal structure of a classical spinning electron

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A classical model of the spinning electron in general relativity consisting of a rotating charge distribution with Poincaré stresses is set up. It is made out of a continuous superposition of thin charged shells with differential rotation. Each elementary shell is maintained in stationary equilibrium in the gravitational field created by the others. A class of interior solutions of the Kerr-Newman field is thus obtained. The corresponding stress-energy tensor naturally splits into the sum of two terms. The first one is the Maxwell tensor associated to a rotating charge distribution, and the second one corresponds to a material source having zero energy density everywhere, no radial pressure, and an isotropic transverse stress. These negative pressures or tensions are identified with the cohesive forces introduced by Poincaré to stabilize the Lorentz electron model. They are shown to be the source of a negative gravitational mass density and thereby of the violation of the energy conditions inside the electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gautreau, R. (1985).Phys. Rev. D 31, 1860.

    Google Scholar 

  2. Tiwari, R. N., Rao, J. R., and Kanakamedala, R. R. (1984).Phys. Rev. D 30, 489.

    Google Scholar 

  3. Grøn, Ø. (1985).Phys. Rev. D 31, 2129.

    Google Scholar 

  4. Poincaré, H. (1905).Comptes Rend. Acad. Sci. (Paris) 140, 1504;id. (1906).Rend. Circ. Mat. Palermo 21, 129.

    Google Scholar 

  5. Lorentz, H. A. (1904).Proc. Amsterdam Acad. Sci. 6, 809.

    Google Scholar 

  6. Tartaglia, A., and Agnello, M. (1986).Nuovo Cimento 95B, 55.

    Google Scholar 

  7. Tolman, R. C. (1930).Phys. Rev. 35, 875; Whittaker, E. T. (1935).Proc. Roy. Soc. Land. A149, 384.

    Google Scholar 

  8. Newman, E. T., et al. (1965).J. Math. Phys. 6, 918.

    Google Scholar 

  9. López, C. A. (1984).Phys. Rev. D 30, 313.

    Google Scholar 

  10. Boyer, R. H., and Lindquist, R. W. (1967).J. Math. Phys. 8, 265.

    Google Scholar 

  11. López, C. A. (1990).Gen. Rel. Grav. 22, 827.

    Google Scholar 

  12. Florides, P. S. (1977).Nuovo Cimento 42A, 343.

    Google Scholar 

  13. Grøn, Ø. (1988).Gen. Rel. Grav. 20, 123.

    Google Scholar 

  14. Landau, L. D., and Lifshitz, E. M. (1975).The Classical Theory of Fields (Pergamon, New York).

    Google Scholar 

  15. Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge).

    Google Scholar 

  16. Wald, R. M. (1984).General Relativity (University of Chicago Press, Chicago).

    Google Scholar 

  17. Ipser, J., and Sikivie, P. (1983).Phys. Rev. D 30, 712; López, C. A. (1988).Phys. Rev. D38, 3662.

    Google Scholar 

  18. Guth, A. (1981).Phys. Rev. D 23, 347.

    Google Scholar 

  19. Morris, M. S., Thorne, K. S. and Yurtsever, U. (1988).Phys. Rev. Lett. 61, 1446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, C.A. Internal structure of a classical spinning electron. Gen Relat Gravit 24, 285–296 (1992). https://doi.org/10.1007/BF00760230

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00760230

Keywords

Navigation