Skip to main content
Log in

Geometrodynamics vs. connection dynamics

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The purpose of this review is to describe in some detail the mathematical relationship between geometrodynamics and connection dynamics in the context of the classical theories of 2+1 and 3+1 gravity. We analyze the standard Einstein-Hilbert theory (in any spacetime dimension), the Palatini and Chern-Simons theories in 2+1 dimensions, and the Palatini and self-dual theories in 3+1 dimensions. We also couple varions matter fields to these theories and briefly describe a pure spin-connection formulation of 3+1 gravity. We derive the Euler-Lagrange equations of motion from an action principle and perform a Legendre transform to obtain a Hamiltonian formulation of each theory. Since constraints are present in all these theories, we construct constraint functions and analyze their Poisson bracket algebra. We demonstrate, whenever possible, equivalences between the theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashtekar, A. (1987).Phys. Rev. D 36, 1587.

    Google Scholar 

  2. Ashtekar, A. (1988).New Perspectives in Canonical Gravity (with invited contributions) (Bibliopolis, Naples).

    Google Scholar 

  3. Ashtekar, A. (1991).Lectures on Non-Perturbative Canonical Gravity (notes prepared in collaboration with R. S. Tate) (World Scientific, Singapore).

    Google Scholar 

  4. Jacobson, T., and Smolin, L. (1987).Class. Quant. Grav. 5, 583.

    Google Scholar 

  5. Samuel, J. (1987).Pramana J. Phys. 28, L429.

    Google Scholar 

  6. Jacobson, T., and Smolin, L. (1988).Nucl. Phys. B 229, 295.

    Google Scholar 

  7. Rovelli, C., and Smolin, L. (1990).Nud. Phys. B 331, 80.

    Google Scholar 

  8. Witten, E. (1988).Nucl. Phys. B 311, 46.

    Google Scholar 

  9. Ashtekar, A., Husain, V., Rovelli, C., Samuel, J., and Smolin, L. (1989).Class. Quant. Grav. 6, L185.

    Google Scholar 

  10. Plebański, J. F. (1977).J. Math. Phys. 18, 2511.

    Google Scholar 

  11. Capovilla, R., Dell, J., and Jacobson, T. (1989).Phys. Rev. Lett. 63, 2325.

    Google Scholar 

  12. Capovilla, R., Dell, J., Jacobson, T., and Mason, L. (1991).Class. Quant. Grav. 8, 41.

    Google Scholar 

  13. Capovilla, R., Dell, J., and Jacobson, T. (1991).Class. Quant. Grav. 8, 59.

    Google Scholar 

  14. Capovilla, R. (1992).Nucl. Phys. B 373, 233.

    Google Scholar 

  15. Peldán, P. (1992).Class. Quant. Grav. 9, 2079.

    Google Scholar 

  16. Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge).

    Google Scholar 

  17. Ashtekar, A. (1992). “Mathematical Problems of Non-Perturbative Quantum General Relativity,” (Lectures delivered at the 1992 Les Houches summer school on Gravitation and Quantization) Syracuse University Preprint, SU-GP-92/11-2.

  18. Smolin, L. (1992). InProc. 1991 GIFT International Seminar on Theoretical Physics: Quantum Gravity and Cosmology (Saint Feliu de Guixols, Catalonia, Spain) (World Scientific, Singapore), to appear.

    Google Scholar 

  19. Rovelli, C. (1991).Class. Quant. Grav. 8, 1613.

    Google Scholar 

  20. Kodama, H. (1992).Int. J. Mod. Phys. D1, 439.

    Google Scholar 

  21. Moncrief, V. (1989).J. Math. Phys. 30, 2907.

    Google Scholar 

  22. Hosoya, A., and Nakao, K. (1990).Class. Quant. Grav. 7, 163.

    Google Scholar 

  23. Hosoya, A., and Nakao, K. (1990).Prog. Theor. Phys. 84, 739.

    Google Scholar 

  24. Carlip, S. (1990).Phys. Rev. D 142, 2647.

    Google Scholar 

  25. Carlip, S. (1993).Phys. Rev. D 47, 4520.

    Google Scholar 

  26. Anderson, A. (1992). “Canonical Transformations and Time in 2+1 Quantum Gravity on the Torus,” McGill University Preprint, McGill 92-19.

    Google Scholar 

  27. Wald, R. M. (1984).General Relativity (University of Chicago Press, Chicago).

    Google Scholar 

  28. Arnowitt, R., Deser, S., and Misner, C. W. (1962). InGravitation: An Introduction to Current Research, L. Witten, ed., (Wiley, New York).

    Google Scholar 

  29. Dirac, P. A. M. (1964).Lectures on Quantum Mechanics (Belfer Graduate School of Science Yeshiva University, New York).

    Google Scholar 

  30. Ashtekar, A. and Romano, J. D. (1989).Phys. Lett. 229B, 56.

    Google Scholar 

  31. Ashtekar, A., Horowitz, G. T., and Magnon, A. (1982).Gen. Rel. Grav. 14, 411.

    Google Scholar 

  32. Achucarro, A., and Townsend, P. K. (1986).Phys. Lett. 180B, 89.

    Google Scholar 

  33. Ashtekar, A., Romano, J. D., and Tate, R. S. (1989).Phys. Rev. D 40, 2572.

    Google Scholar 

  34. Ashtekar, A., Mazur, P., and Torre, C. T. (1987).Phys. Rev. D 36, 2955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, J.D. Geometrodynamics vs. connection dynamics. Gen Relat Gravit 25, 759–854 (1993). https://doi.org/10.1007/BF00758384

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00758384

Keywords

Navigation