Skip to main content
Log in

A global analysis approach to the general relativistic fluid ball problem

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

That a self-gravitating perfect fluid in empty space has a spherical equilibrium configuration if it is static-i.e., nonrotating-is considered physically evident, but has not yet been rigorously derived from Einstein's field equations together with suitable asymptotic conditions. In this paper the global analysis techniques developed recently mainly by Fischer, Marsden, and Cantor are used to derive the result that if a family of static perfect fluid solutions with fixed total gravitational massm and fixed equation of stateϱ(p) satisfying 0 ⩽p ⩽ ϱ and 0 ⩽dϱ/dp < ∞ depends differentiably on a parameter and contains the spherically symmetric solution then it must consist of solutions diffeomorphic to the spherically symmetric one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avez, A. (1964). “Leds 2 de Schwarzschild parmi lesds 2 stationnaires,”Ann. Inst. Henri Poincaré,1, 291–300.

    Google Scholar 

  2. Berger, M., and Ebin, D. (1969). “Some decompositions of the space of symmetric tensors on a Riemannian manifold,”J. Diff. Geom.,3, 379–392.

    Google Scholar 

  3. Cantor, M. (1975). “Spaces of functions with asymptotic conditions onR n,”Indiana Univ. Math. J.,24, 897–902.

    Google Scholar 

  4. Cantor, M. (1975). “Perfect fluid flows over Rn with asymptotic conditions,”J. Funct. Anal.,18, 73–84.

    Google Scholar 

  5. Cantor, M. (1979). “Some problems of global analysis on asymptotically simple manifolds,”Comp. Math.,38, 3–35.

    Google Scholar 

  6. Carleman, T. (1919). “Ueber eine isoperimetrische Aufgabe und ihre physikalischen Anwendungen,”Mart. Z.,3, 1–7.

    Google Scholar 

  7. Choquet, G., and Choquet-Bruhat, Y. (1978). “Sur un problème lié a la stabilité des données initiales en relativité générale,”C. R. Acad. Sci. Paris,287A, 1047–1049.

    Google Scholar 

  8. Choquet-Bruhat, Y. (1977). “Compactification de variétés asymptotiquement euclidéennes. Applications,”C. R. Acad. Sci. Paris,285A, 1061–1064.

    Google Scholar 

  9. Ebin, D. G. (1970). “The manifold of Riemannian metrics,”Proc. Symp. Pure Math. Amer. Math. Soc.,15, 11–40.

    Google Scholar 

  10. Ehlers, J., and Kundt, W. (1962). “Exact solutions of the gravitational field equations,” inGravitation, An Introduction to Current Research, ed. Witten, L. (Wiley, New York).

    Google Scholar 

  11. Fischer, A. E., and Marsden, J. E. (1974). “Linearization stability of nonlinear partial differential equations,”Proc. Symp. Pure Math. Amer. Math. Soc.,27, 219–263.

    Google Scholar 

  12. Fischer, A. E., and Marsden, J. E. (1975). “Deformations of the scalar curvature,”Duke Math. J.,42, 519–547.

    Google Scholar 

  13. Fischer, A. E., and Marsden, J. E. (1977), “The manifold of conformally equivalent metrics,”Can. J. Math.,29, 193–209.

    Google Scholar 

  14. Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge).

    Google Scholar 

  15. Künzle, H. P. (1971). “On the spherical symmetry of a static perfect fluid,”Commun. Math. Phys.,20, 85–100.

    Google Scholar 

  16. Künzle, H. P., and Savage, J. R. (1977). “Un systeme élliptique sur les variétés de dimension deux,”C. R. Acad. Sci. Paris,287A, 975–978.

    Google Scholar 

  17. Künzle, H. P., and Savage, J. R. (1980). “Equilibrium of slowly rotating relativistic fluids,”J. Math. Phys., to appear.

  18. Lang, S. (1972).Differential Manifolds (Addison-Wesley, Reading, Massachusetts).

    Google Scholar 

  19. Lichnerowicz, A. (1955).Théories relativistes de la gravitation et de l'éléctromagnetism (Masson, Paris).

    Google Scholar 

  20. Lichtenstein, L. (1919). “Über eine isoperimetrische Aufgabe der mathematischen Physik,”Math. Z.,3, 8–10.

    Google Scholar 

  21. Lichtenstein, L. (1933).Gleichgewichtsfiguren rotierender Flüssigkeiten (Springer Verlag, Berlin).

    Google Scholar 

  22. Lindblom, L. A., (1978), “Fundamental properties of equilibrium stellar models,” Ph.D. thesis, University of Maryland.

  23. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (Freeman, San Francisco).

    Google Scholar 

  24. Nirenberg, L., and Walker, H. F. (1973). “The null spaces of elliptic partial differential operators inR n,”J. Math. Anal. Appl.,42, 271–301.

    Google Scholar 

  25. Robinson, D. C. (1977). “A simple proof of the generalization of Israel's theorem,”Gen. Rel. Grav.,8, 695–698.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by the National Sciences and Engineering Research Council, grant No. A8059.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Künzle, H.P., Savage, J.R. A global analysis approach to the general relativistic fluid ball problem. Gen Relat Gravit 12, 155–174 (1980). https://doi.org/10.1007/BF00756470

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756470

Keywords

Navigation