Skip to main content
Log in

Einstein gravity as spontaneously broken Weyl gravity

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the locally conformal invariant Weyl theory of gravitation and introduce a conformally coupled scalar field. Einstein gravity is induced by spontaneous breaking of the local conformal symmetry in an effective long range approximation. The effective potential for the scalar field is calculated at the one-loop level up to curvature squared in order in an arbitrary curved background. The non-zero vacuum expectation value of the scalar field induces the dimensional Einstein's gravitational coupling constant stably in case ofR > 0. ForR < 0, the phase transition occurs from the symmetric phase to the broken phase as the curvature decreases. This theory may be an attractive candidate for the primordial inflationary universe scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Utiyama, R. and DeWitt, B. S. (1962).J. Math. Phys.,3, 608.

    Google Scholar 

  2. Stelle, K. S. (1977).Phys. Rev. D,16, 953.

    Google Scholar 

  3. Adler, S. L. (1982).Rev. Mod. Phys.,54, 729.

    Google Scholar 

  4. Schwarz, J. H., ed.Superstring, (2 vols., World Scientific, Singapore).

  5. Weyl, H. (1918).Sitzungsber. Preuss. Akad. Wiss., 465.

  6. van Nieuwenhuizen, P. (1981).Phys. Rep.,68, 189.

    Google Scholar 

  7. Fradkin, E. S., and Tseytlin, A. A. (1985).Phys. Rep.,119, 233.

    Google Scholar 

  8. Fujii, Y. (1974).Phys. Rev. D,9, 874.

    Google Scholar 

  9. Deser, S. (1970).Ann. Phys.,59, 248.

    Google Scholar 

  10. Julve, J., and Tonin, M. (1978).Nuovo Cimento,46B, 137.

    Google Scholar 

  11. Fradkin, E. S., and Tseytlin, A. A. (1981).Phys. Lett.,104B, 377; (1982).Nucl Phys.,B201, 469.

    Google Scholar 

  12. Avramidi, I. G. (1986).Sov. J. Nucl. Phys.,44(1), 160.

    Google Scholar 

  13. Grisaru, M. T., and Siegel, W. (1982).Nucl. Phys.,B201, 292.

    Google Scholar 

  14. Howe, P. S., Stelle, K. S., and Townsend, P. K. (1984).Nucl. Phys.,B236, 125.

    Google Scholar 

  15. Fradkin, E. S., and Tseytlin, A. A. (1982).Nucl. Phys.,B203, 157.

    Google Scholar 

  16. Fradkin, E. S., and Tseytlin, A. A. (1982).Phys. Lett.,110B, 117 (and Errata (1983)126B 506).

    Google Scholar 

  17. Duff, M. J. (1977).Nucl. Phys.,B125, 334.

    Google Scholar 

  18. Fradkin, E. S., and Tseytlin, A. A. (1984).Phys. Lett,134B, 187.

    Google Scholar 

  19. Boulware, D. G. (1984). InQuantum Theory of Gravity, S. M. Christensen, ed. (Adam Hilger, Bristol).

    Google Scholar 

  20. Boulware, D. G., Horowitz, G. T., and Strominger, A. (1983).Phys. Rev. Lett,50, 1726.

    Google Scholar 

  21. Kaku, M. (1983).Phys. Rev. D,27, 2809.

    Google Scholar 

  22. Kaku, M. (1983).Phys. Rev. D,27, 2819.

    Google Scholar 

  23. Tomboulis, E. T. (1984).Phys. Rev. Lett.,52, 1173.

    Google Scholar 

  24. Tomboulis, E. T. (1977).Phys. Lett.,70B, 361.

    Google Scholar 

  25. Tomboulis, E. T. (1980).Phys. Lett,97B, 77.

    Google Scholar 

  26. Tomboulis, E. T. (1984). InQuantum Theory of Gravity, S. M. Christensen, ed. (Adam Hilger, Bristol).

    Google Scholar 

  27. Strominger, A. (1984). InQuantum Theory of Gravity, S. M. Christensen, ed. (Adam Hilger, Bristol).

    Google Scholar 

  28. Antoniadis, I., and Tsamis, N. C. (1984). Preprint SLAC-PUB-3297.

  29. Kugo, T., and Uehara, S. (1983).Nucl. Phys.,B226, 49.

    Google Scholar 

  30. Brans, C., and Dicke, R. H. (1961).Pkys. Rev.,124, 925.

    Google Scholar 

  31. Bergshoeff, E., de Roo, M., and de Wit, B. (1983).Nucl. Phys.,B217, 489.

    Google Scholar 

  32. de Roo, M. (1985).Nucl. Phys.,B255, 515.

    Google Scholar 

  33. de Roo, M., and Wagemans, P. (1985).Nucl. Phys.,B262, 644.

    Google Scholar 

  34. Coleman, S., and Weinberg, E. (1973).Phys. Rev. D,7, 1888.

    Google Scholar 

  35. Abbot, L. F. (1981).Nucl. Phys.,B185, 189.

    Google Scholar 

  36. 't Hooft, G. (1971).Nucl. Phys.,B33, 173.

    Google Scholar 

  37. Barth, N. H. and Christensen, S. M. (1983).Phys. Rev. D,28, 1876.

    Google Scholar 

  38. Fradkin, E. S., and Vilkovisky, G. A. (1978).Phys. Lett.,73B, 209.

    Google Scholar 

  39. Ishikawa, K. (1983).Phys. Rev. D,28, 2445.

    Google Scholar 

  40. DeWitt, B. S. (1965).Dynamical Theory of Groups and Fields, (Gordon and Breach, New York).

    Google Scholar 

  41. Barvinsky, A. O., and Vilkovisky, G. A. (1985).Phys. Rep.,119, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuo, N. Einstein gravity as spontaneously broken Weyl gravity. Gen Relat Gravit 22, 561–593 (1990). https://doi.org/10.1007/BF00756230

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756230

Keywords

Navigation