Skip to main content
Log in

Constitutive equation for describing high strain rates of Al and Mg in a shock wave

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. D. J. Steinberg, S. G. Cochran, and M. W. Guinom, “A constitutive model for metals applicable at high strain rates,” J. Appl. Phys.,51, No. 3, 1498–1504 (1980).

    Google Scholar 

  2. G. I. Kanel', “Model of the kinetics of plastic strain in metals under shock-wave loads,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 105–110 (1982).

    Google Scholar 

  3. L. V. Al'tshuler and B. S. Chekin, “Relaxation parameters of metals behind the shock wave front,” Detonation, Critical Phenomena, Physical-Chemical Transformations in Shock Waves [in Russian], Chernogolovka (1978), pp. 87–89.

  4. S. K. Godunov and N. S. Kozin, “The structure of shock waves in viscoelastic matanials with a nonlinear dependence of the Maxwellian viscosity on material parameters,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 101–108 (1974).

    Google Scholar 

  5. S. E. Jones, P. P. Gills, and J. C. Foster, “On the equation of the undeformed section of a Taylor impact,” J. Appl. Phys.,62, No. 2, 499–502 (1987).

    Google Scholar 

  6. P. A. Urtiew and R. Glover, “The melting temperature of magnesium under shock loading,” J. Appl. Phys.,48, No. 3, 1122–1125 (1977).

    Google Scholar 

  7. L. V. Al'tshuler and S. E. Brusnikin, “Equations of state of compressed and heated metals,” Teplofiz. Vys. Temp.,27, No. 1, 42–51 (1989).

    Google Scholar 

  8. L. V. Al'tshuler, S. E. Brusnikin, and E. A. Kuz'menkov, “Isotherms and Grüneisen functions for 25 metals,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 134–146 (1987).

    Google Scholar 

  9. L. V. Al'tshuler, S. B. Kormer, et al., “Isoentropic compression of aluminum, copper, lead, and iron at high pressures,” Zh. Éksp. Teor. Fiz.,38, No. 4, 1061–1073 (1960).

    Google Scholar 

  10. A. A. Vorob'ev, A. N. Dremin, and G. I. Kanel', “Dependence of the elastic coefficients of aluminum on the degree of compression in a shock wave,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 94–100 (1974).

    Google Scholar 

  11. R. G. McQueen, J. N. Fritz, and C. F. Morris, “The velocity of sound behind strong shock waves in 2024Al,” in: Shock Waves in Condensed Matter, 1983, Amsterdam (1984), pp. 95–98.

  12. K. A. Cschucidner, “Solid state physics,” Phys. Prop. Interrelationships,16, No. 1, 275–420 (1964).

    Google Scholar 

  13. Y. S. Toulounian and C. Y. Ho (eds.), Thermophysical Properties of Matter, Vol. 12, Plenum Press, New York-Washington (1975).

    Google Scholar 

  14. V. D. Urlin and A. A. Ivanov, “On the melting of lead during shock wave compression,” Dokl. Akad. Nauk SSSR,146, No. 6, 1303–1306 (1963).

    Google Scholar 

  15. S. A. Novikov and L. M. Sinitsyna, “On the effect of the pressure of shock compression on the value of the critical shear stresses in metals,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 107–110 (1970).

    Google Scholar 

  16. J. O. Erkman and A. B. Christensen, “Attenuation of shock waves in aluminum,” J. Appl. Phys.,38, No. 13, 5395–5403 (1967).

    Google Scholar 

  17. J. Lipkin and J. R. Assay, “Reshock and release of shock-compressed 6061-T6 aluminum, J. Appl. Phys.,48, No. 1, 182–189 (1977).

    Google Scholar 

  18. S. A. Bordzilovskii and S. M. Karakhanov, “Secondary compression and unloading of duraluminum behind the front of a shock wave,” Fiz. Goreniya Vzryva,22, No. 3, 131–136 (1986).

    Google Scholar 

  19. Yu. V. Bat'kov, B. L. Glushak, and S. A. Novikov, “Hardness of aluminum, copper, and steel behind a shock front,” Fiz. Goreniya Vzryva,25, No. 5, 126–132 (1989).

    Google Scholar 

  20. Z. Rosenberg, Y. Partom, and D. Yaziv, “The use of in-material stress gages for estimating the dynamic yield strength of shock-loaded solids,” J. Appl. Phys.,56, No. 1, 143–146 (1984).

    Google Scholar 

  21. L. C. Chhabldas and C. R. Hills, “Dynamic shock studies of vanadium,” in: Metallurgical Application of Shock Waves and High-Strain-Rate Phenomena, L. E. Murr et al., eds., Basel (1986), pp. 429–448.

  22. C. E. Morris, J. N. Fritz, and B. Holian, “Quasi-elastic high pressure waves in 2024 Al and Cu,” in: Shock Waves in Condensed Matter 1981, New York (1982), pp. 382–386.

  23. A. S. Kusubov and M. van Thiel, “Dynamic yield strength of 2024 Al at 313 kbar,” J. Appl. Phys.,40, No. 2, 893–894 (1969).

    Google Scholar 

  24. A. N. Dremin, G. I. Kanel', and O. B. Chernikova, “Resistance to plastic strain of aluminum AD1 and duraluminum D16 under shock compression conditions, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 132–138 (1981).

    Google Scholar 

  25. D. R. Curran, “Nonhydrodynamic attenuation of shock waves in Al,” J. Appl. Phys.,34, No. 9, 2677–2690 (1963).

    Google Scholar 

Download references

Authors

Additional information

Arzamas. Translated from Fizika Goreniya i Vzryva, Vol. 28, No. 1, pp. 84–89, January–February, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glushak, B.L., Novikov, S.A. & Bat'kov, Y.V. Constitutive equation for describing high strain rates of Al and Mg in a shock wave. Combust Explos Shock Waves 28, 79–83 (1992). https://doi.org/10.1007/BF00754973

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754973

Keywords

Navigation