Skip to main content
Log in

Physics of solvation

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Calculations are presented of the energetics of an impurity (atom or ion) interacting with a fluid. Two possible configurations are considered: a surface state and a solvated state. For two distinct model problems which we consider (any classical fluid and superfluid helium) we find a common behaviour: the value of a dimensionless parameter λ determines the relative stability of the surface and solvated states. For λ greater (less) than 1.9, the sovated (surface) state is favored. A more realistic estimate for a classical fluid is λ ∼ 1. Predictions are made of a universal solvation behaviour derived from the law of corresponding states. Results are presented for the solvated fraction as a function of cluster radius and temperature. Quantum corrections and the kinetics of solvation are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Stienkemeier, J. Higgins, W. E. Ernst, and G. Scoles,Phys. Rev. Lett. 74, 3592 (1995); S. Goyal, D. L. Schutt and G. Scoles,Accts. Chem. Res. 26, 123 (1993).

    Google Scholar 

  2. R. Fröchtenicht, J. P. Toennies, and A. Vilesov,Chem. Phys. Lett. 229, 1 (1994).

    Google Scholar 

  3. I. Rips and J. Jortner,J. Chem. Phys. 97, 536 (1992).

    Google Scholar 

  4. F. Dalfovo,Z. Phys. D 89, 61 (1994); K. E. Kürten and M. L. Rising,Phys. Rev. B 31, 1346 (1985).

    Google Scholar 

  5. J. E. Adams and R. M. Stratt,J. Chem. Phys. 99, 789 (1993); R. M. Stratt and J. E. Adams,ibid 99, 775 (1993).

    Google Scholar 

  6. K. B. Whaley,Intl. Rev. Phys. Chem. 13, 41 (1994).

    Google Scholar 

  7. D. Scharf, G. Martyna, and M. L. Klein,J. Chem. Phys. 99, 8997 (1993).

    Google Scholar 

  8. F. Ancilotto, M. W. Cole, G. DeToffol, P. B. Lerner, and F. Toigo,J. Low Temp. Phys., in press; F. Ancilotto, G. DeToffol, and F. Toigo, submitted toPhys. Rev. B.

  9. P. B. Lerner, M. W. Cole, and E. Cheng,J. Low Temp. Phys. 100, 501 (1995).

    Google Scholar 

  10. D. Eichenauer and R. J. Le Roy,J. Chem. Phys. 88, 2899 (1988).

    Google Scholar 

  11. L. Perera and F. G. Amar,J. Chem. Phys. 93, 4884 (1990).

    Google Scholar 

  12. G. Scoles,Intl. J. Quant. Chem. 24, 275 (1990).

    Google Scholar 

  13. A similar situation occurs in wetting, for which the inertness leads to thermodynamic transitions for both classical and quantum fluids on alkali metal surfaces; see M. W. Cole, E. Cheng, C. Carraro, W. F. Saam, M. R. Swift and J. Treiner,Physica B 197, 254 (1994) and E. Cheng, M. W. Cole, W. F. Saam, and J. Treiner,Phys. Rev. B 48, 18214 (1993).

    Google Scholar 

  14. J. Dupont-Roc, M. Himbert, N. Pavloff, and J. Treiner,J. Low Temp. Phys. 81, 31 (1990).

    Google Scholar 

  15. See e.g. F. F. Abraham and C. R. Brandie, J. Vac,Sci. Tech. 18, 506 (1981).

    Google Scholar 

  16. F. Ancilotto and F. Toigo,Phys. Rev. B 50, 12820 (1994); E. Cheng, M. W. Cole, W. F. Saam, and J. Treiner,Phys. Rev. B 46, 13967 (1992) and47, 14661 (1993).

    Google Scholar 

  17. S. Chandrasekhar,Rev. Mod. Phys. 15, 63 (1943).

    Google Scholar 

  18. R. A. Aziz, in Inert Gases, ed. M. L. Klein (Springer, Berlin, 1984); R. A. Aziz, V. P. S Nain, J. S. Carley, W. L. Taylor, and G. T. McConville,J. Chem. Phys. 70, 4330 (1979).

    Google Scholar 

  19. S. H. Patil,J. Chem. Phys. 94, 8089 (1991).

    Google Scholar 

  20. R. T. Pack, E. Piper, G. A. Pfeffer, and J. P. Toennies,J. Chem. Phys. 80, 4940 (1984).

    Google Scholar 

  21. A. Bhattacharya and J. B. Anderson,Phys. Rev. A 49, 2441 (1994).

    Google Scholar 

  22. F. Ancilotto, E. Cheng, M. W. Cole, and F. Toigo,Z. Phys. B., in press.

  23. D. Konawalow, unpublished, presented by D. Scharf, G. Martyna, and M. L. Klein,J. Chem. Phys. 99, 8897 (1993); L. Pierre, H. Guignes, and C. Lhuillier,J. Chem. Phys. 82, 496 (1985).

    Google Scholar 

  24. R. N. Barnett and K. B. Whaley,J. Chem. Phys. 99, 9730 (1993).

    Google Scholar 

  25. A. P. M. Matthey, J. T. M. Walraven, I. F. Silvera,Physica B and C 108, 1499 (1981); R. W. Cline, T. J. Greytak, and D. Kleppner,Phys. Rev. Lett. 47, 1195 (1981); M. Morrow, R. Jochemsen, A. J. Berlinsky, and W. N. Hardy,Phys. Rev. Lett. 46, 195 (1981) and47, 445E (1981).

    Google Scholar 

  26. D. O. Edwards and W. F. Saam, inProg. Low Temp. Phys., ed. by D. F. Brewer (North Holland, Amsterdam, 1978) Vol. VIIA, p. 283; N. Pavloff and J. Treiner,J. Low Temp. Phys. 83, 15 (1991).

    Google Scholar 

  27. R. Evans,Adv. Phys. 28, 143 (1979); M. Napiórski and S. Dietrich,Phys. Rev. E 47, 1836 (1993).

    Google Scholar 

  28. R. Ahlrichs, H. J. Böhm, S. Brode, K. T. Tang, and J. P. Toennies,J. Chem. Phys. 88. 6290 (1988).

    Google Scholar 

  29. P. E. Siska. JCP 85, 7497 (1986); A. D. Koutselos, E. A. Mason, and L. A. Viehland,J. Chem. Phys. 93, 7125 (1990).

    Google Scholar 

  30. P. Leiderer, J. Low Temp. Phys. 87, 247 (1992); J. P. Hernandez,Rev. Mod. Phys. 63, 675 (1991).

    Google Scholar 

  31. The values of η are slowly varying aboveT = 1 K, but change from 35 to 160 micropoise on changing from 1K to 0.8 K; see A. D. B. Woods and A. C. Hollis Hallett, Can.J. Phys. 41, 596 (1963). Of course, the lowT regime is only approximately described by the Chandrasekhar formula because the impurity motion is then ballistic rather than hydrodynamic.

    Google Scholar 

  32. G. Baym,Phys. Rev. Lett. 17, 952 (1966).

    Google Scholar 

  33. J. de Boer,Rept. Prog. Phys. 12, 305 (1949); R. K. Pathria, Statistical Mechanics (Pergamon, Oxford, 1972) §12.12.

    Google Scholar 

  34. M. E. Hayden and W. N. Hardy,J. Low Temp. Phys. 99, 787 (1995).

    Google Scholar 

  35. M. Saarela and E. Krotscheck,ibid 90, 415 (1993).

    Google Scholar 

  36. F. Stienkemeier, J. Higgins, W. E. Ernst, C. Callagari, and G. Scoles, Proc. XII Intl. Conf. on Laser Spectroscopy, Capri, 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ancilotto, F., Lerner, P.B. & Cole, M.W. Physics of solvation. J Low Temp Phys 101, 1123–1146 (1995). https://doi.org/10.1007/BF00754527

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754527

Keywords

Navigation