Skip to main content
Log in

Relationship between the structure and mechanical properties in ß III titanium alloy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ageing reactions that take place during the heat-treatment of solution-treatedβ III titanium (11.5 wt% Mo, 6 wt% Zr, 4.5 wt% Sn, balance Ti) were followed by detailed structure characterization using electron microscopy. The variations in mechanical properties with heat treatment were also followed systematically. The electron microscopy investigations indicated that the omega phase formed on quenching. The size and volume fraction of the omega phase increased on subsequent ageing,β,ω andα phases were found to co-exist at ageing temperatures between 800 and 900° F (427 and 482° C) for short ageing times. From the observations of interfacial dislocations at theβ/ω interface and the precipitation of fine alpha near the omega particles, with a morphology that is characteristic of the priorω morphology, it is suggested that theα-phase forms directly from the omega phase. The observed increase in yield strength over the solution-treated condition, due to the precipitation ofω phase, was found to agree well with that predicted by the Orowan hardening mechanism. Since the precipitation of fine ellipsoidalα-phase was found to increase the yield strength of the alloy with reasonable ductility, it is suggested that the optimum heat treatment to produce high strength with good ductility inβ III titanium is to age at 900° F (482° C) for 10 to 25 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Beta Titanium-Alloys”, Metals and Ceramics Information Center Report, MCIC-72-11 (Battelle Columbus Labs., September, 1972).

  2. A. M. Adair andJ. A. Roberson, Proceedings of 2nd International Conference on the Strength of Metals and Alloys, Vol. III (ASM, Metals Park, Ohio 1970) p. 932.

    Google Scholar 

  3. V. C. Peterson, J. B. Guernsey andR. C. Buehl, AFML TR-69-171, June (1969).

  4. J. C. Williams, in “Titanium Science and Technology”, Vol. 3, edited by R. I. Jaffee and H. M. Burte (Plenum, New York, 1972) p. 1433.

    Google Scholar 

  5. J. A. Feeney andM. J. Blackburn,Met Trans. 1 (1979) 3309.

    Google Scholar 

  6. J. M. Silcock, M. H. Davies andH. K. Hardy, “The Mechanism of Phase Transformations in Metals” (Institute of Metals Monograph, No. 18, 1955) p. 93.

    Google Scholar 

  7. Yu. A. Bargaryatsky, G. I. Nosova andT. V. Tagunova,Dokaldy Akad. Nauk. USSR 105 (1955) 1225.

    Google Scholar 

  8. J. C. Williams, D. deFontaine andN. E. Paton,Acta Met. 19 (1971) 1156.

    Google Scholar 

  9. B. A. Hatt andJ. A. Roberts,ibid 8 (1960) 575

    Google Scholar 

  10. W. G. Brammer andC. G. Rhodes,Phil. Mag. 16 (1967) 477.

    Google Scholar 

  11. B. S. Hickman,Trans. AIME 245 (1969) 1329.

    Google Scholar 

  12. J. C. Williams andM. J. Blackburn,ibid 245 (1969) 2352.

    Google Scholar 

  13. A. W. Bowen,J. Mater. Sci. 12 (1977) 1355.

    Google Scholar 

  14. L. A. Rosales, K. Ono, A. W. Sommer andL. A. Lee, in “Titanium Science and Technology”, Vol. 3, edited by R. I. Jaffee and H. H. Burte (Plenum, New York, 1972) p. 1813.

    Google Scholar 

  15. K. Ono, L. A. Rosales, S. Motokura andA. W. Sommer, “Mechanical Behavior of Materials”, Vol. I (Society of Materials Science, Japan, 1972) p. 66.

    Google Scholar 

  16. P. Ganesan, R. J. De Angelis andGordon A. Sargent,J. Less-Common Metals 34 (1974) 209.

    Google Scholar 

  17. S. G. Fedotov, “Titanium and Its Alloys”, NASA-TT-1, 362 (1963).

  18. P. Ganesan, G. A. Sargent andR. J. De Angelis,Metallogr. 10 (1977) 399.

    Google Scholar 

  19. G. Vigier andJ. Merlin,ibid 12 (1979) 113.

    Google Scholar 

  20. H. J. Rack, David Kalish andK. D. Fike,Mat. Sci. Eng. 6 (1979) 181.

    Google Scholar 

  21. T. S. Luhman andA. E. Curzon,J. Mater. Sci. 7 (1972) 710.

    Google Scholar 

  22. Minchung Jon, Hiroshi Fujimura andR. J. De Angelis,Metallogr. 5 (1972) 139.

    Google Scholar 

  23. G. Vigier, J. Merlin andP. F. Gobin,J. Less-Common Metals 46 (1976) 29.

    Google Scholar 

  24. E. Orawan, “Symposium on Internal Stresses in Metals and Alloys”, (Institute of Metals, London 1948) p. 45.

    Google Scholar 

  25. A. J. E. Foreman andM. J. Makin,Canad. J. Phys. 45 (1967) 511.

    Google Scholar 

  26. L. M. Brown andR. K. Ham, “Strengthening Methods in Crystals” (Applied Science, London, 1971) p. 34.

    Google Scholar 

  27. U. F. Kocks, “Physics of Strength and Plasticity” (MIT press, Cambridge, 1969) p. 143.

    Google Scholar 

  28. P. B. Hirsch andF. J. Humphreys,ibid“, p. 189.

    Google Scholar 

  29. A. J. E. Foreman, P. B. Hirsch andF. J. Humphreys, “Fundemental Aspects of Dislocation Theory”, US Nat. Bur. Stand. Special Publ. 317, Vol. 11, (1970) 1083.

    Google Scholar 

  30. M. J. Blackburn andJ. C. Williams,Trans. AIME 242 (1968) 2461.

    Google Scholar 

  31. J. M. Silcock,Acta Met. 6 (1958) 481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, P., Sargent, G.A. & De Angelis, R.J. Relationship between the structure and mechanical properties in ß III titanium alloy. J Mater Sci 15, 1425–1435 (1980). https://doi.org/10.1007/BF00752122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752122

Keywords

Navigation