Skip to main content
Log in

Effect of the protonmotive force on ATP-linked processes and mobilization of the bound natural ATPase inhibitor in beef heart submitochondrial particles

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In an attempt to determine whether the natural ATPase inhibitor (IF1) plays a role in oxidative phosphorylation, the time course of ATP synthesis and ATP hydrolysis in inside-out submitochondrial particles from beef heart mitochondria either possessing IF1 (Mg-ATP particles) or devoid of IF1 (AS particles) was investigated and compared to movements of IF1, as assessed by an isotopic assay. The responses of the above reactions to preincubation of the particles in aerobiosis with NADH or succinate were as follows: (1) The few seconds lag that preceded the steady-rate phase of ATP synthesis was shortened and even abolished both in Mg-ATP particles and AS particles. The rate of ATP synthesis in the steady state was independent of the length of the lag. (2) ATPase was slowly activated, maximal activation being obtained after a 50-min preincubation; there was no direct link between the development of the protonmotive force (maximal within 1 sec) and ATPase activation. (3) Bound IF1 was slowly released; the release of bound IF1 as a function of the preincubation period was parallel to the enhancement of ATPase activity; the maximal amount of IF1 released was a small fraction of the total IF1 bound to the particles (less than 20%). (4) The double reciprocal plots of the rates of ATP and ITP hydrolysis vs. substrate concentrations that were curvilinear in the absence of preincubation with a respiratory substrate became linear after aerobic preincubation with the substrate. The data conclusively show that only ATPase activity in submitochondrial particles is correlated with the release of IF1, and that the total extent of IF1 release induced by respiration is limited. On the other hand, the kinetics of ATPase in control and activated particles are consistent with the existence of two conformations of the membrane-bound F1-ATPase, directed to ATP synthesis or ATP hydrolysis and distinguishable by their affinity for IF1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asami, K., Juntti, K., and Ernster, L. (1970).Biochim. Biophys. Acta 205 307–311.

    Google Scholar 

  • Bradford, M. M. (1976).Anal. Biochem. 72 248–254.

    Google Scholar 

  • Chang, T.-M., and Penefsky, H. S. (1973).J. Biol. Chem. 248 2746–2754.

    Google Scholar 

  • Cintron, N. M., Hullihen, J., Schwerzmann, K., and Pedersen, P. L. (1982).Biochemistry 21 1878–1885.

    Google Scholar 

  • Dreyfus, G., Gomez-Puyou, A., and Tuena de Gomez-Puyou, M. (1981).Biochem. Biophys. Res. Commun. 100 400–406.

    Google Scholar 

  • Ernster, L., Juntti, K., and Asami, K. (1973).J. Bioenerg. 4 149–159.

    Google Scholar 

  • Ernster, L., Carlsson, C., Hundal, T., and Nordenbrand, K. (1979).Methods Enzymol. 55 399–407.

    Google Scholar 

  • Ferguson, S. J., Lloyd, W. J., and Radda, G. K. (1976).Biochem. J. 159 347–353.

    Google Scholar 

  • Fiske, C. H., and SubbaRow, Y. (1925).J. Biol. Chem. 66 375–400.

    Google Scholar 

  • Frangione, B., Rosenwasser, E., Penefsky, H. S., and Pullman, M. E. (1981).Proc. Natl. Acad. Sci. USA 78 7403–7407.

    Google Scholar 

  • Gomez-Fernandez, J. C., and Harris, D. A. (1978).Biochem. J. 176 967–975.

    Google Scholar 

  • Gomez-Puyou, A., Tuena de Gomez-Puyou, M., and Ernster, L. (1979).Biochim. Biophys. Acta 547 252–257.

    Google Scholar 

  • Gornall, A. G., Bardawill, C. J., and David, M. M. (1949).J. Biol. Chem. 177 751–766.

    Google Scholar 

  • Harris, D. A., Von Tscharner, V., and Radda, G. K. (1979).Biochim. Biophys. Acta 548 72–84.

    Google Scholar 

  • Horstman, L. L., and Racker, E. (1970).J. Biol. Chem. 245 1336–1344.

    Google Scholar 

  • Klein, G., Satre, M., and Vignais, P. V. (1977).FEBS Lett. 84 129–134.

    Google Scholar 

  • Klein, G., Satre, M., Dianoux, A. C., and Vignais, P. V. (1980).Biochemistry 19 2919–2925.

    Google Scholar 

  • Klein, G., Satre, M., Dianoux, A. C., and Vignais, P. V. (1981).Biochemistry 20 1339–1344.

    Google Scholar 

  • Knowles, A. F., and Penefsky, H. S. (1972).J. Biol. Chem. 247 6617–6623.

    Google Scholar 

  • Krull, K. W., and Schuster, S. M. (1981).Biochemistry 20 1592–1598.

    Google Scholar 

  • Löw, H., and Vallin, I. (1963).Biochim. Biophys. Acta 69 361–374.

    Google Scholar 

  • Lundin, A., Rickardsson, A., and Thore, A. (1976).Anal. Biochem. 75 611–620.

    Google Scholar 

  • Mitchell, P., and Moyle, J. (1974).Biochem. Soc. Spec. Publ. 4 91–111.

    Google Scholar 

  • Pedersen, P. L. (1976).J. Biol. Chem. 251 934–940.

    Google Scholar 

  • Pedersen, P. L., Schwerzmann, K., and Cintron, N. (1981).Curr. Top. Bioenerg. 11 149–199.

    Google Scholar 

  • Pullman, M. E., and Monroy, G. C. (1963).J. Biol. Chem. 238 3762–3769.

    Google Scholar 

  • Racker, E., and Horstman, L. L. (1967).J. Biol. Chem. 242 2547–2551.

    Google Scholar 

  • Schuster, S. M., Ebel, R. E., and Lardy, H. A. (1975).J. Biol. Chem. 250 7848–7853.

    Google Scholar 

  • Schwerzmann, K., and Pedersen, P. L. (1981).Biochemistry 20 6305–6311.

    Google Scholar 

  • Sims, P. J., Waggoner, A. S., Wang, C. H., and Hoffman, J. F. (1974).Biochemistry 13 3315–3330.

    Google Scholar 

  • Smith, A. L. (1967).Methods Enzymol. 10 81–86.

    Google Scholar 

  • Van de Stadt, R. J., De Boer, B. L., and Van Dam, K. (1973).Biochim. Biophys. Acta 292 338–349.

    Google Scholar 

  • Van de Stadt, R. J., and Van Dam, K. (1974).Biochim. Biophys. Acta 347 240–252.

    Google Scholar 

  • Villiers, C., Michejda, J. W., Block, M., Lauquin, G. J. M., and Vignais, P. V. (1979).Biochim. Biophys. Acta 546 157–170.

    Google Scholar 

  • Waggoner, A. S., Wang, C. H., and Tolles, R. L. (1977).J. Membr. Biol. 33 109–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, G., Vignais, P.V. Effect of the protonmotive force on ATP-linked processes and mobilization of the bound natural ATPase inhibitor in beef heart submitochondrial particles. J Bioenerg Biomembr 15, 347–362 (1983). https://doi.org/10.1007/BF00751055

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00751055

Key Words

Navigation