Skip to main content
Log in

Evidence for direct roles of calcium in photosynthesis

  • Short Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Calcium may function directly in several aspects of photosynthesis. It appears to modulate activity of the phosphatase enzymes in the carbon reduction cycle and also to regulate chloroplast NAD+ kinase activity through a calmodulin-like protein. Some evidence supports a calcium function in the water-splitting complex, and other evidence indicates a reaction center function in photosystem II. Calcium in reaction center II may be tightly bound in chloroplasts and weakly bound in blue-green algal thylakoids. Free calcium concentration in stroma is probably <10−6 M, although the absolute concentration is not yet known. Intrathylakoid calcium content is likely very high. Stromal calcium may regulate several enzyme activities, while intrathylakoid calcium may promote photosystem II constitutively. Results to date demonstrate the need for more attention to cation composition in studies of both light and dark reactions of photosynthesis, and the need to identify free calcium levels in chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. M., and Cormier, M. J. (1978).Biochem. Biophys. Res. Commun. 84 595–602.

    Google Scholar 

  • Barber, J. (1982).Annu. Rev. Plant Physiol. 33 261–295.

    Google Scholar 

  • Barber, J., Mills, J., and Nicolson, J. (1974).FEBS Lett. 49 106–110.

    Google Scholar 

  • Barr, R., and Crane, F. L. (1982).Biochem. Biophys. Res. Commun. 109 1215–1221.

    Google Scholar 

  • Barr, R., and Crane, F. L. (1983).Proceedings of the Sixth International Congress on Photosynthesis (in press).

  • Barr, R., Troxel, K. S., and Crane, F. L. (1980).Biochem. Biophys. Res. Commun. 92 206–212.

    Google Scholar 

  • Barr, R., Troxel, K. S., and Crane, F. L. (1982).Biochem. Biophys. Res. Commun. 104 1182–1188.

    Google Scholar 

  • Barr, R., Troxel, K. S., and Crane, F. L. (1983).Plant Physiol. 73 309–315.

    Google Scholar 

  • Becker, D. W., and Brand, J. J. (1982).Biochem. Biophys. Res. Commun. 109 1134–1139.

    Google Scholar 

  • Binder, A., Tel-Or, E., and Avron, M. (1976).Eur. J. Biochem. 67 187–196.

    Google Scholar 

  • Black, C. C., Fewson, C. A., and Gibbs, M. (1963).Nature (London) 198 88.

    Google Scholar 

  • Brand, J. J. (1979).FEBS Lett. 103 114–117.

    Google Scholar 

  • Brand, J. J., Mohanty, P., and Fork, D. C. (1983).FEBS Lett. 155, 120–124.

    Google Scholar 

  • Buchanan, B. B. (1980).Annu. Rev. Plant Physiol. 31 341–374.

    Google Scholar 

  • Burris, J. E., and Black, C. C. (1983).Plant Physiol. 71 712–715.

    Google Scholar 

  • Charles, S. A., and Halliwell, B. (1980).Biochem. J. 188 775–779.

    Google Scholar 

  • Cheung, W. Y., ed. (1982).Calcium and Cell Function, Vols. 1–3, Academic Press, New York.

    Google Scholar 

  • Corps, A. N., Hesketh, T. R., and Metcalfe, J. C. (1982).FEBS Lett. 138 280–284.

    Google Scholar 

  • Cournier, S., Grouzis, J.-P., Rambier, M., and Paris-Pireyre, N. (1982).Physiol. Veg. 20 423–432.

    Google Scholar 

  • Critchley, C., Baianu, I. C., Govindjee, and Gutowsky, H. S. (1982).Biochim. Biophys. Acta 682 436–445.

    Google Scholar 

  • Davidson, V. L., and Knaff, D. B. (1981).Biochim. Biophys. Acta 637 53–60.

    Google Scholar 

  • DeRoo, C. L. S., and Yocum, C. F. (1981).Biochem. Biophys. Res. Commun. 100 1025–1031.

    Google Scholar 

  • Dilley, R. A., and Vernon, L. P. (1965).Arch. Biochem. Biophys. 111 365–375.

    Google Scholar 

  • Earnshaw, M. J., Madden, D. M., and Hanson, J. B. (1973).J. Exp. Bot. 24 828–840.

    Google Scholar 

  • England, R. R., and Evans, E. H. (1981).FEBS Lett. 134 175–177.

    Google Scholar 

  • England, R. R., and Evans, E. H. (1983).Biochem. J. 210 473–476.

    Google Scholar 

  • Fredricks, W. W., and Jagendorf, A. T. (1964).Arch. Biochem. Biophys. 104 39–49.

    Google Scholar 

  • Gavalas, N. A., and Manetas, Y. (1980a).Plant Physiol. 65 860–863.

    Google Scholar 

  • Gavalas, N. A., and Manetas, Y. (1980b).Z. Pflanzenphysiol. Bd. 100.S., 179–184.

    Google Scholar 

  • Glazer, A. N. (1982).Annu. Rev. Microbiol. 36 173–198.

    Google Scholar 

  • Heber, U., and Heldt, H. W. (1981).Annu. Rev. Plant Physiol. 32 139–168.

    Google Scholar 

  • Hertig, C., and Wolosiuk, R. A. (1980).Biochem. Biophys. Res. Commun. 97 325–333.

    Google Scholar 

  • Hidaka, H., Yasuharu, S., Tanaka, T., Endo, T., Ohno, S., Fujii, Y., and Nagata, T. (1981).Proc. Natl. Acad. Sci. USA 78 4354–4357.

    Google Scholar 

  • Hind, G., Nakatani, H. Y., and Izawa, S. (1974).Proc. Natl. Acad. Sci USA 71 1484–1488.

    Google Scholar 

  • Ho, K. K., and Krogmann, D. W. (1982). InThe Biology of Cyanobacteria (Carr, N. G., and Whitton, B. A., eds.), Blackwell Scientific, Oxford, pp. 191–214.

    Google Scholar 

  • Itoh, S. (1978).Plant Cell Physiol. 19 149–166.

    Google Scholar 

  • Izawa, S., and Good, N. E. (1966).Plant Physiol. 41 533–543.

    Google Scholar 

  • Jarrett, H. W., Brown, C. J., Black, C. C., and Cormier, M. J. (1982).J. Biol. Chem. 257 13795–13804.

    Google Scholar 

  • Jasper, P. J., and Silver, S. (1978).J. Bacteriol. 133 1323–1328.

    Google Scholar 

  • Larkum, A. W. D. (1968).Nature (London) 218 447–449.

    Google Scholar 

  • McSwain, B. D., Tsujimoto, H. Y., and Arnon, D. I. (1976).Biochim. Biophys. Acta 423 313–318.

    Google Scholar 

  • Miginiac-Maslow, M., and Hoarau, A. (1977).Plant Sci. Lett. 9 7–15.

    Google Scholar 

  • Muto, S. (1982).FEBS Lett. 147 161–164.

    Google Scholar 

  • Muto, S., and Miyachi, S. (1977).Plant Physiol. 59 55–60.

    Google Scholar 

  • Muto, S., Izawa, S., and Miyachi, S. (1982).FEBS Lett. 139 250–254.

    Google Scholar 

  • Nakatani, H. Y., Barber, J., and Minski, M. J. (1979).Biochim. Biophys. Acta 545 24–35.

    Google Scholar 

  • Neish, A. C. (1939).Biochem. J. 33 300–308.

    Google Scholar 

  • Nobel, P. S. (1969).Biochim. Biophys. Acta 172 134–143.

    Google Scholar 

  • Nobel, P. S., and Packer, L. (1964).Biochim. Biophys. Acta 88 453–455.

    Google Scholar 

  • Nobel, P. S., and Packer, L. (1965).Plant Physiol. 401 633–640.

    Google Scholar 

  • Nobel, P. S., and Murakami, S. (1967).J. Cell Biol. 32 209–211.

    Google Scholar 

  • Nobel, P. S., Murakami, S., and Takamiya, A. (1966).Plant Cell Physiol. 7 263–275.

    Google Scholar 

  • O'Keefe, D. P., and Dilley, R. A. (1977).Biochim. Biophys. Acta 461 48–60.

    Google Scholar 

  • Ono, T.-A., and Inoue, Y. (1983).Biochim. Biophys. Acta 723 191–201.

    Google Scholar 

  • Piccioni, R. G., and Mauzerall, D. C. (1976).Biochim. Biophys. Acta 423 605–609.

    Google Scholar 

  • Piccioni, R. G., and Mauzerall, D. C. (1978a).Biochim. Biophys. Acta 504 384–397.

    Google Scholar 

  • Piccioni, R. G., and Mauzerall, D. C. (1978b).Biochim. Biophys. Acta 504 398–405.

    Google Scholar 

  • Portis, A. R., and Heldt, H. W. (1976).Biochim. Biophys. Acta 449 434–446.

    Google Scholar 

  • Prochaska, L. J., and Gross, E. L. (1977).J. Membr. Biol. 36 13–32.

    Google Scholar 

  • Rosa, L. (1981).FEBS Lett. 134 151–154.

    Google Scholar 

  • Rosen, B. P. (1982). InMembrane Transport of Calcium (Carafoli, E., ed.), Academic Press, New York, pp. 187–216.

    Google Scholar 

  • Roux, S. J., and Slocum, R. D. (1982). InCalcium and Cell Function, Vol. 3 (Cheung, W. Y., ed.), Academic Press, New York, pp. 409–453.

    Google Scholar 

  • Rurainski, H. J., and Mader, G. (1977).Biochim. Biophys. Acta 461 489–499.

    Google Scholar 

  • Scarpa, A., and Carafoli, E. (1978).Calcium Transport and Cell Function, Annals of the New York Academy of Sciences, Vol. 307, pp. 1–655.

  • Smillie, R. M., Henningsen, K. W., Nielsen, N. C., and von Wettstein, D. (1976).Carlsberg Res. Commun. 41 27–56.

    Google Scholar 

  • Stocking, C. R., and Ongun, A. (1962).Am. J. Bot. 49 284–289.

    Google Scholar 

  • Susor, W. A., and Krogmann, D. W. (1964).Biochim. Biophys. Acta 88 11–19.

    Google Scholar 

  • Tamura, N., Itoh, S. Yamamoto, Y., and Nishimura, M. (1981).Plant Cell Physiol. 22 603–612.

    Google Scholar 

  • Telfer, A., Barber, J., and Jagendorf, A. T. (1980).Biochim. Biophys. Acta 591 331–345.

    Google Scholar 

  • Williamson, R. E., and Ashley, C. C. (1982).Nature (London) 296 647–650.

    Google Scholar 

  • Weis, E. (1982).Planta 154 41–47.

    Google Scholar 

  • Wolosiuk, R. A., Hertig, C. M., Nishizawa, A. N., and Buchanan, B. B. (1982).FEBS Lett. 140 31–35.

    Google Scholar 

  • Yamagishi, A., Satoh, K., and Katoh, S. (1981).Biochim. Biophys. Acta 637 252–263.

    Google Scholar 

  • Yamashita, T., and Tomita, G. (1974).Plant Cell Physiol. 15 69–82.

    Google Scholar 

  • Yamashita, T., and Tomita, G. (1976).Plant Cell Physiol. 17 571–582.

    Google Scholar 

  • Yerkes, C. T., and Babcock, G. T. (1981).Biochim. Biophys. Acta 634 19–29.

    Google Scholar 

  • Yu, C. M-C., and Brand, J. J. (1980).Biochim. Biophys. Acta 591 483–487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, J.J., Becker, D.W. Evidence for direct roles of calcium in photosynthesis. J Bioenerg Biomembr 16, 239–249 (1984). https://doi.org/10.1007/BF00744278

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00744278

Key Words

Navigation