Skip to main content
Log in

The role of the adenine nucleotide translocator in oxidative phosphorylation. A theoretical investigation on the basis of a comprehensive rate law of the translocator

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A minimum model of adenine nucleotide exchange through the inner membrane of mitochondria is presented. The model is based on a sequential mechanism, which presumes ternary complexes formed by binding of metabolites from both sides of the membrane. The model explains the asymmetric kinetics of ADP-ATP exchange as a consequence of its electrogenic character. In energized mitochondria, a part of the membrane potential suppresses the binding of extramitochondrial ATP in competition with ADP. The remaining part of the potential difference inhibits the back exchange of internal ADP for external ATP. The assumption of particular energy-dependent conformational states of the translocator is not necessary. The model is not only compatible with the kinetic properties reported in the literature about the adenine nucleotide exchange, but it also correctly describes the response of mitochondrial respiration to the extramitochondrial ATP/ADP ratio under different conditions. The model computations reveal that the translocation step requires some loss of free energy as driving force. The size of the driving force depends on the flux rate as well as on the extra- and intramitochondrial ATP/ADP quotients. By both quotients the translocator controls the export of ATP formed by oxidative phosphorylation in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böhme, G., Hartung, K. J., and Kunz, W. (1978). InBioenergetics at Mitochondrial and Cellular Levels (Wojtczak, L., Lenartowicz, E., and Zborowski, J., eds.), Nencki Institute of Experimental Biology, Warsaw, pp. 79–102.

    Google Scholar 

  • Bohnensack, R. (1981).Biochim. Biophys. Acta 634 203–218.

    Google Scholar 

  • Cleland, W. W. (1963).Biochim. Biophys. Acta 67 104–137.

    Google Scholar 

  • Davis, E. J., and Davis-van-Thienen, W. F. A. (1978).Biochem. Biophys. Res. Commun. 83 1260–1266.

    Google Scholar 

  • Duyckaerts, C., Sluse-Goffart, C. M., Fux, J.-P., Sluse, F. E., and Liebecq, C. (1980).Eur. J. Biochem. 106 1–6.

    Google Scholar 

  • Erecinska, M., Kula, T., and Wilson, D. F. (1978).FEBS Lett. 87 139–144.

    Google Scholar 

  • Klingenberg, M. (1970). InEssays in Biochemistry (Campbell, S. N., and Dickens, F., eds.), Vol. 6, Academic Press, New York, pp. 120–159.

    Google Scholar 

  • Klingenberg, M. (1972). InMitochondria/Biomembranes (Van den Berg, S. G., Borst, F., Van Deenen, L. L. M., Riemersma, J. C., Slater, E. C., and Tager, J. M., eds.), North-Holland, Amsterdam, pp. 147–162.

    Google Scholar 

  • Klingenberg, M. (1979).Trends Biochem. Sci. 4 249–252.

    Google Scholar 

  • Klingenberg, M. (1980).J. Membr. Biol. 56 97–105.

    Google Scholar 

  • Klingenberg, M., and Rottenberg, H. (1977).Eur. J. Biochem. 73 126–130.

    Google Scholar 

  • Krämer, R., and Klingenberg, M. (1980a).Biochemistry 19 556–560.

    Google Scholar 

  • Krämer, R., and Klingenberg, M. (1980b). First European Bioenergetics Conference, Short Reports, Patron Editore, Bologna, pp. 271–272.

    Google Scholar 

  • Kunz, W., Bohnensack, R., Böhme, G., Küster, U., Letko, G., and Schönfeld, P. (1981).Arch. Biochem. Biophys. 209 219–229.

    Google Scholar 

  • Kunz, W., Bohnensack, R., Küster, U., Letko, G., and Schönfeld, P. (1979). InFunctions and Molecular Aspects of Biomembranes (Quagliariello, E., Palmieri, F., Papa, S., and Klingenberg, M., eds.) Elsevier/North-Holland, Amsterdam, pp. 313–316.

    Google Scholar 

  • Küster, U., Letko, G., Kunz, W., Duszynski, J., Bogucka, K., and Wojtczak, L. (1981).Biochim. Biophys. Acta 636 32–38.

    Google Scholar 

  • La Noue, K., Mizani, S. M., and Klingenberg, M. (1978).J. Biol. Chem. 253 191–198.

    Google Scholar 

  • Letko, G., and Küster, U. (1979).Acta Biol. Med. Germ. 38 1379–1385.

    Google Scholar 

  • Pfaff, E., Heldt, H. W., and Klingenberg, M. (1969).Eur. J. Biochem. 10 484–493.

    Google Scholar 

  • Souverijn, J. H. M., Huisman, L. A., Rosing, J., and Kemp, A., Jr. (1973).Biochim. Biophys. Acta 305 185–198.

    Google Scholar 

  • Stubbs, M., Vignais, P. V., and Krebs, H. A. (1978).Biochem. J. 172 333–342.

    Google Scholar 

  • Van der Meer, R., Akerboom, T. P. M., Groen, A. K., and Tager, J. M. (1978).Eur. J. Biochem. 84 421–428.

    Google Scholar 

  • Vignais, P. V. (1976).Biochim. Biophys. Acta 456 1–38.

    Google Scholar 

  • Vignais, P. V., Vignais, P. M., and Doussiére, J. (1975).Biochim. Biophys. Acta 376 219–230.

    Google Scholar 

  • Vignais, P. V., Vignais, P. M., Lauquin, G., and Morel, F. (1973).Biochemie 55 763–778.

    Google Scholar 

  • Villiers, C., Michejda, J. W., Block, M., Lauquin, G. J. M., and Vignais, P. V. (1979).Biochim. Biophys. Acta 546 157–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohnensack, R. The role of the adenine nucleotide translocator in oxidative phosphorylation. A theoretical investigation on the basis of a comprehensive rate law of the translocator. J Bioenerg Biomembr 14, 45–61 (1982). https://doi.org/10.1007/BF00744078

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00744078

Key Words

Navigation