Skip to main content
Log in

Differential effects of cobalt on the initiation of fast axonal transport

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Effects of Co2+ on the fast axonal transport of individual proteins were examined in vitro in bullfrog spinal/sciatic nerves.35S-methionine-labeled proteins, fast-transported in control and Co2+-treated preparations were separated via two-dimensional gel electrophoresis. While the overall amount of protein transported was reduced, no qualitative differences could be seen when gel fluorographic patterns were compared. Quantitative analyses of the 48 most abundantly transported species revealed two significantly different populations (p < 0.01) differentially sensitive to Co2+ and distinguishable to a large extent by molecular weight. Those proteins less sensitive to Co2+ ranged from ~20,000 to 35,000 daltons while those more sensitive to Co2+ were >~35,000 daltons. The finding that all proteins are affected by Co2+ supports the proposal that fast-transported proteins are subject to a common Co2+-sensitive, Ca2+-requiring step. The observed differential effects are consistent with more than one Ca2+-dependent step occurring during the initiation phase of fast transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argent, B. E., Case, R. M., and Scratcherd, T. (1973). Amylase secretion by the perfused cat pancreas in relation to the secretion of calcium and other electrolytes and as influenced by external ionic environment.J. Physiol 230575–593.

    Google Scholar 

  • Caro, L. G., and Palade, G. E. (1964). Protein synthesis, storage, and discharge in the pancreatic exocrine cell. An autoradiographic study.J. Cell Biol. 20473–495.

    Google Scholar 

  • Chandler, D. E., and Williams, J. A. (1974). Pancreatic acinar cells: effects of lanthanum ions on amylase release and calcium ion fluxes.J. Physiol. 243831–846.

    Google Scholar 

  • Douglas, W. W. (1968). Stimulus secretion coupling: the concept and clues from chromaffin and other cells.Br. J. Pharmacol. 34451–474.

    Google Scholar 

  • Dravid, A. R., and Hammerschlag, R. (1975a). Axoplasmic transport of proteinsin vitro in primary afferent neurons of frog spinal cord: effect of Ca2+-free incubation conditions.J. Neurochem. 24711–718.

    Google Scholar 

  • Dravid, A. R., and Hammerschlag, R. (1975b). The role of calcium in axonal transport: gel electrophoretic comparison of proteins undergoing ‘fast’ transport in normal and calcium-free medium.Abstr. Int. Soc. Neurochem. 5261.

    Google Scholar 

  • Droz, B. (1969). Protein metabolism in nerve cells.Int. Rev. Cytol. 25363–390.

    Google Scholar 

  • Droz, B. (1975). Synthetic machinery and axoplasmic transport: maintenance of neuronal connectivity. In Brady, R. O., (ed.),The Nervous System Volume 1: The Basic Neurosciences, Raven Press, New York, pp. 111–127.

    Google Scholar 

  • Droz, B., Koenig, H. L., and Di Giamberardino, L. (1973). Axonal migration of protein and glycoprotein to nerve endings. I. Radioautographic analysis of the renewal or protein in nerve endings of chicken ciliary ganglion after intracerebral injection of [3H]lysine.Brain Res. 6093–127.

    Google Scholar 

  • Eagle, H. (1959). Amino acid metabolism in mammalian cell cultures.Science 130432–437.

    Google Scholar 

  • Edström, A., and Mattsson, H. (1973). Electrophoretic characterization of leucine-, glucosamine- and fucose-labelled proteins rapidly transported in frog sciatic nerve.J. Neurochem. 211499–1507.

    Google Scholar 

  • Forman, D. S., McEwen, B. S., and Grafstein, B. (1971). Rapid transport of radioactivity in goldfish optic nerve following injections of labelled glucosamine.Brain Res. 28119–130.

    Google Scholar 

  • Hammerschlag, R. (1980). The role of calcium in the initiation of fast axonal transport.Fed. Proc.,392809–2814.

    Google Scholar 

  • Hammerschlag, R., and Lavoie, P.-A. (1979). Initiation of fast axonal transport: involvement of calcium during transfer of proteins from Golgi apparatus to the transport system.Neurosci. 41195–2001.

    Google Scholar 

  • Hammerschlag, R., Dravid, A. R., and Chiu, A. Y. (1975). Mechanism of axonal transport: a proposed role of calcium ions.Science 188273–275.

    Google Scholar 

  • Hammerschlag, R., Chiu, A. Y., and Dravid, A. R. (1976). Inhibition of fast axonal transport of [3H]protein by cobalt ions.Brain Res. 114353–358.

    Google Scholar 

  • Jamieson, J. D., and Palade, G. E. (1967a). Intracellular transport of secretory proteins in pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex.J. Cell Biol. 34577–596.

    Google Scholar 

  • Jamieson, J. D., and Palade, G. E. (1967b). Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport of condensing vacuoles and zymogen granules.J. Cell Biol. 34597–615.

    Google Scholar 

  • Jamieson, J. D., and Palade, G. E. (1968a). Intracellular transport of secretory proteins in pancreatic exocrine cell. III. Dissociation of intracellular transport from protein synthesis.J. Cell Biol. 39590–588.

    Google Scholar 

  • Jamieson, J. D., and Palade, G. E. (1968b). Intracellular transport of secretory proteins in pancreatic exocrine cell. IV. Metabolic requirements.J. Cell Biol. 39589–603.

    Google Scholar 

  • Karlsson, J.-O., and Sjöstrand, J. (1971). Rapid intracellular transport of fucose-containing glycoproteins in retinal ganglion cells.J. Neurochem. 182209–2216.

    Google Scholar 

  • Kern, H. F., and Kern, D. (1969). Elektronenmikroskopische Untersuchungen uber die Wirkung von Kobaltchlorid auf das exokrine Pankreasgewebe des Meerschweinchens.Virchows Arch. 454–70.

    Google Scholar 

  • Laskey, R. A., and Mills, A. D. (1975). Quantitative film detection of3H and14C in polyacrylamide gels by fluorography.Eur. J. Biochem. 56335–341.

    Google Scholar 

  • Lavoie, P.-A., Bolen, F., and Hammerschlag, R. (1979). Divalent cation specificity of the calcium requirement for fast transport of proteins in axons of desheathed nerves.J. Neurochem. 321745–1751.

    Google Scholar 

  • Leblond, C. P., and Bennett, G. (1977). Role of Golgi apparatus in terminal glycosylation. In Brinkley, B. R., and Porter, K. R. (eds.),International Cell Biology, Rockefeller University Press, New York, pp. 326–336.

    Google Scholar 

  • Lindsey, J. D., Hammerschlag, R., and Ellisman, M. H. (1980). An increase in smooth endoplasmic reticulum and a decrease in Golgi apparatus occur with ionic conditions that block initiation of fast axonal transport.Brain Res.,205275–287.

    Google Scholar 

  • Morré, D. J., Keenan, T. W., and Huang, C. M. (1974). Membrane flow and differentiation: origin of Golgi apparatus membranes from endoplasmic reticulum.Adv. Cytopharmacol. 2107–125.

    Google Scholar 

  • Novikoff, P. M., Novikoff, A. B., Quintana, N., and Hauw, J.-J. (1971). Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry.J. Cell Biol. 50859–886.

    Google Scholar 

  • Novikoff, A. B. (1976). The endoplasmic reticulum: a cytochemist's view (a review).Proc. Natl. Acad. Sci. USA 732781–2787.

    Google Scholar 

  • Novikoff, A. B., Mori, M., Quintana, N., and Yam, A. (1977). Studies of the secretory process in the mammalian exocrine pancreas. I. The condensing vacuoles.J. Cell Biol. 75148–165.

    Google Scholar 

  • O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins.J. Biol. Chem. 2504007–4021.

    Google Scholar 

  • Palade, G. E. (1975). Intracellular aspects of the process of protein secretion.Science 189347–357.

    Google Scholar 

  • Rambourg, A., Clermont, Y., and Marraud, A. (1974). Three-dimensional structure of the osmiumimpregnated Golgi apparatus as seen in the high voltage electron microscope.Am. J. Anat. 14027–46.

    Google Scholar 

  • Rambourg, A., Clermont, Y. and Hermo, L. (1979). Three-dimensional architecture of the Golgi apparatus in Sertoli cells of the rat.Am. J. Anat. 154455–476.

    Google Scholar 

  • Rubin, R. P. (1970). The role of calcium in the release of neurotransmitter substances and hormones.Pharmac. Rev. 22389–418.

    Google Scholar 

  • Schachter, H. (1974). The subcellular sites of glycosylation.Biochem. Soc. Symp. 4057–80.

    Google Scholar 

  • Stone, G. C., and Hammerschlag, R. (1980). Effects of cobalt on rapid axonal transport: two-dimensional gel analysis.Abstr. Amer. Soc. Neurochem. 11143.

    Google Scholar 

  • Stone, G. C., and Wilson, D. L. (1979). Qualitative analysis of proteins rapidly transported in ventral horn motoneurons and bidirectionally from dorsal root ganglia.J. Neurobiol. 101–12.

    Google Scholar 

  • Stone, G. C., Wilson, D. L., and Hall, M. E. (1978). Two-dimensional gel electrophoresis of proteins in rapid axoplasmic transport.Brain Res. 144287–302.

    Google Scholar 

  • Tartakoff, A., and Vassalli, P. (1978). Comparative studies of intracellular transport of secretory proteins.J. Cell Biol. 79694–707.

    Google Scholar 

  • Teichberg, S., and Holtzman, E. (1973). Axonal agranular reticulum and synaptic vesicles in cultured embryonic chick sympathetic neurons.J. Cell Biol. 5788–108.

    Google Scholar 

  • Wallach, D., and Schramm, M. (1971). Calcium and the exportable protein in rat parotid gland.Eur. J. Biochem. 21433–437.

    Google Scholar 

  • Wilson, D. L., Hall, M. E., Stone, G. C., and Rubin, R. W. (1977). Some improvements in two-dimensional gel electrophoresis of proteins: protein mapping of eukaryotic tissue extracts.Anal. Biochem. 8333–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a Muscular Dystrophy Association postdoctoral fellowship to G.C.S., and by research grants from NSF (BNS 79-24125) and the National Multiple Sclerosis Society (RG 1296-A-1) to R.H.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, G.C., Hammerschlag, R. Differential effects of cobalt on the initiation of fast axonal transport. Cell Mol Neurobiol 1, 3–17 (1981). https://doi.org/10.1007/BF00736036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00736036

Key words

Navigation