Skip to main content
Log in

Cellular and molecular mechanisms controlling melatonin release by mammalian pineal glands

  • Review and Commentary
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The pineal gland is regulated primarily by photoperiodic information attaining the organ through a multisynaptic pathway initiated in the retina and the retinohypothalamic tract.

  2. 2.

    Norepinephrine (NE) released from superior cervical ganglion (SCG) neurons that provide sympathetic innervation to the pineal acts through alpha1- and beta1-adrenoceptors to stimulate melatonin synthesis and release.

  3. 3.

    The increase in cyclic AMP mediated by beta1-adrenergic activation is potentiated by the increase in Ca2+ flux, inositol phospholipid turnover, and prostaglandin and leukotriene synthesis produced by alpha1-adrenergic activation.

  4. 4.

    Central pinealopetal connections may also participate in pineal control mechanisms; transmitters and modulators in these pathways include several neuropeptides, amino acids such as gamma-aminobutyric acid (GABA) and glutamate, and biogenic amines such as serotonin, acetylcholine, and dopamine.

  5. 5.

    Secondary regulatory signals for pineal secretory activity are several hormones that act on receptors sites on pineal cells or at any stage of the neuronal pinealopetal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alphs, L., and Lovenberg, W. (1984). Modulation of rat pineal acetyl-CoA: Arylamine N-acetyltransferase induction by alpha adrenergic drugs.J. Pharmacol. Exp. Ther. 230431–437.

    Google Scholar 

  • Arendt, J., Laud, C. A., and Symons, A. M. (1983). Plasma melatonin increases in ewes following ovariectomy.J. Reprod. Fertil. 68213–218.

    Google Scholar 

  • Ariëns-Kappers, J. (1981). A survey of advances in pineal research. InThe Pineal Gland, Vol. 1. Anatomy and Biochemistry (R. J. Reiter, Ed.), CRC Press, Boca Raton, Fla., pp. 1–26.

    Google Scholar 

  • Axelrod, J. (1983). Regulation of circadian rhythms in pineal gland. InThe Pineal Gland and Its Endocrine Role (J. Axelrod, F. Fraschini, and G. P. Velo, Eds.), Plenum Press, New York, pp. 1–13.

    Google Scholar 

  • Basile, A. S., Klein, D. C., and Skolnick, P. (1986). Characterization of benzodiazepine receptors in the bovine pineal gland: Evidence for the presence of an atypical binding site.Mol. Brain Res. 1127–135.

    Google Scholar 

  • Birau, N. (1981). Melatonin in serum: Progress in screening and clinic.Adv. Biosci. 28297–326.

    Google Scholar 

  • Bowers, N. G., and Zigmond, R. E. (1982). The influence of the frequency and pattern of sympathetic nerve activity on serotonin N-acetyltransferase in the rat pineal.J. Physiol. Lond. 330279–296.

    Google Scholar 

  • Bowery, N. G., Hill, D. R., and Hudson, A. L. (1983). Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes.Br. J. Pharmacol. 78191–206.

    Google Scholar 

  • Cardinali, D. P. (1979). Models in neuroendocrinology. Neurohumoral pathways to the pineal gland.Trends Neurosci. 2250–253.

    Google Scholar 

  • Cardinali, D. P. (1983). Molecular mechanisms of neuroendocrine integration in the central nervour system. An approach through the study of the pineal gland and its innervating sympathetic pathway.Psychoneuroendocrinology 83–30.

    Google Scholar 

  • Cardinali, D. P. (1985). Neuroendocrine significance of peripheral sympathetic projections to thyroid and parathyroid glands.Neuroendocrinol. Lett. 7235–240.

    Google Scholar 

  • Cardinali, D. P., and Ritta, M. N. (1983). The role of prostaglandins in neuroendocrine junctions: Studies in the pineal gland and the hypothalamus.Neuroendocrinology 36152–160.

    Google Scholar 

  • Cardinali, D. P., Nagle, C. A., and Rosner, J. M. (1974). Metabolic fate of androgens in the pineal organ: Uptake, binding to cytoplasmic proteins and conversion of testosterone into 5α-reduced metabolites.Endocrinology 95179–187.

    Google Scholar 

  • Cardinali, D. P., Nagle, C. A., and Rosner, J. M. (1975). Control of estrogen and androgen receptors in the rat pineal gland by catecholamine transmitter.Life Sci. 1693–106.

    Google Scholar 

  • Cardinali, D. P., Vacas, M. I., Gonzalez Solveyra, C., Keller Sarmiento, M. I., and Vollrath, L. (1986a). In vitro effects of estradiol, testosterone and progesterone on 5-methoxyindole content, cyclic adenosine 3′,5′-monophosphate synthesis, and norepinephrine release in different parts of the female guinea-pig pineal complex.J. Pineal Res. 3351–363.

    Google Scholar 

  • Cardinali, D. P., Vacas, M. I., and Boyer, E. E. (1979). Specific binding of melatonin in bovine brain.Endocrinology 105437–441.

    Google Scholar 

  • Cardinali, D. P., Vacas, M. I., Rosenstein, R., Lowenstein, P. R., Gonzalez Solveyra, C., Romeo, H. E., and Keller Sarmiento, M. I. (1986b). The pineal gland as a multieffector organ. InAdvances in Pineal Research, Vol. 1 (R. J. Reiter and M. Karasek, Eds.), John Libbey, London, pp. 127–138.

    Google Scholar 

  • Cardinali, D. P., Vacas, M. I., Rosenstein, R. E., Etchegoyen, G. S., Keller Sarmiento, M. I., Gonzalez Solveyra, C., and Pereyra, E. N. (1987). Multifactorial control of pineal melatonin synthesis. An analysis through binding studies. InAdvances in Pineal Research, Vol. 2 (R. J. Reiter and F. Fraschini, Eds.), John Libbey, London, pp. 51–66.

    Google Scholar 

  • Carrillo, A. J., and Sheridan, P. J. (1980). Estrogen receptors in the medial basal hypothalamus of the rat following complete deafferentation.Brain Res. 186157–164.

    Google Scholar 

  • Cimino, M., Benfenati, F., Nara Begoli, C., Cattabeni, F., and Agnati, L. F. (1987). Protein phosphorylation in rat pineal gland and its regulation in supersensitive and subsensitive states.J. Neurochem. 481069–1074.

    Google Scholar 

  • Daya, S., and Potgieter, B. (1985). The effect of castration, testosterone and estradiol on14C-serotonin metabolism by organ cultures of male pineal glands.Experientia 41275–276.

    Google Scholar 

  • Dickinson, K. E. J., Leeb-Lundberg, L. M. F., Strasser, R. H., Caron, M. G., and Lefkowitz, R. J. (1986). Identification of the subunit structure of rat pineal adrenergic receptors by photoaffinity labeling.J. Neurochem. 461153–1160.

    Google Scholar 

  • Duncan, M. J., Takahashi, J. S., and Dubocovich, M. L. (1986). Characterization of 2-125I-iodomelatonin binding sites in hamster brain.Eur. J. Pharmacol. 132333–334.

    Google Scholar 

  • Ebadi, M. (1984). Regulation of the synthesis of melatonin and its significance to neuroendocrinology. InThe Pineal Gland (R. J. Reiter, Ed.), Raven, New York, pp. 1–37.

    Google Scholar 

  • Ebadi, M., and Chan, A. (1980). Characteristics of GABA binding sites in bovine pineal gland.Brain Res. Bull. (Suppl. 2)5179–187.

    Google Scholar 

  • Exton, J. H. (1985). Role of calcium and phosphoinositosides in the actions of certain hormones and neurotransmitters.J. Clin. Invest. 751753–1757.

    Google Scholar 

  • Gaffori, O., Feffard, M., and Van Ree, J. M. (1983). Des-Tyr-γ-endorphin and haloperidol increase pineal gland melatonin levels in rats.Peptides 4394–395.

    Google Scholar 

  • Goldman, B. D. (1985). The physiology of melatonin. InPineal Research Reviews (R. J. Reiter, Ed.), A. R. Liss, New York, pp. 145–182.

    Google Scholar 

  • Govitrapong, P., and Ebadi, M. (1986). Studies on high affinity3H-substance P binding sites in bovine pineal gland.Endocrine Res. 12293–304.

    Google Scholar 

  • Govitrapong, P., Murrin, L. C., and Ebadi, M. (1984). Characterization of dopaminergic receptor sites in bovine pineal gland.J. Pineal Res. 1215–226.

    Google Scholar 

  • Govitrapong, P., Ebadi, M., and Murrim, L. C. (1986). Identification of a Cl/Ca2+-dependent glutamate binding site in bovine pineal organ.J. Pineal Res. 3223–235.

    Google Scholar 

  • Graf, M. V., and Kastin, A. J. (1986). Delta-sleep-inducing peptide (DSIP): An update.Peptides 71165–1187.

    Google Scholar 

  • Graf, M. V., and Schoenberger, G. A. (1986). DSIP affects adrenergic stimulation of rat pineal N-acetyltransferasein vivo andin vitro.Peptides 71001–1006.

    Google Scholar 

  • Graf, M. V., and Schoenenberger, G. A. (1987). Delta-sleep inducing peptide modulates the stimulation of rat pineal N-acetyltransferase activity by involving theα 1-adrenergic receptors.J. Neurochem. 481252–1257.

    Google Scholar 

  • Gray, H. E., and Luttge, W. G. (1983). A putative glucocorticoid receptor in the rat pineal gland.IRCS Med. Sci. 11437–440.

    Google Scholar 

  • Gray, T. S., and Morley, J. E. (1986). Neuropeptide Y: Anatomical distribution and possible function in mammalian nervous system.Life Sci. 38389–401.

    Google Scholar 

  • Hariharasubramanian, N., Nair, N. P. V., and Pilapil, C. (1985). Circadian rhythm of plasma melatonin and cortisol during menstrual cycle.Adv. Biosci. 5331–36.

    Google Scholar 

  • Hariharasubramanian, N., Nair, N. P. V., Pilapil, C., Thavundayil, J. X., and Quirion, R. (1986). Plasma melatonin levels during menstrual cycle: Changes with age. InThe Pineal Gland During Development: From Fetus to Adult (D. Gupta and R. J. Reiter, Eds.), Croom Helm, London, pp. 166–173.

    Google Scholar 

  • Ho, A. K., Ceña, V., and Klein, D. C. (1987). Cardiac glycosides stimulate phospholipase C activity in rat pinealocytes.Biochem. Biophys. Res. Comm. 142819–825.

    Google Scholar 

  • Holloway, W. R., Grota, L. J., and Brown, G. M. (1985). Immunohistochemical assessment of melatonin binding in the pineal gland.J. Pineal Res. 2235–252.

    Google Scholar 

  • Johnson, L. Y., Vaughan, M. K., Richardson, A., Petterborg, L. J., and Reiter, R. J. (1982). Variation in pineal melatonin content during the estrous cycle of the rat.Proc. Soc. Exp. Biol. Med. 169416–418.

    Google Scholar 

  • Kabuto, M., Namura, I., and Saitoh, Y. (1986). Nocturnal enhancement of plasma melatonin could be suppressed by benzodiazepines in humans.Endocrinol. Japon. 33405–414.

    Google Scholar 

  • Kaku, K., Tsuchiya, M., Matsuda, M., Inoue, Y., Kaneko, T., and Yanaihara, N. (1985). Light and agonist alter vasoactive intestinal peptide binding and intracellular accumulation of adenosine 3′,5′-monophosphate in the rat pineal gland.Endocrinology 1172371–2375.

    Google Scholar 

  • Kaku, K., Tsuchiya, M., Tahizawa, Y., Okuya, S., Inoue, Y., Kaneko, T., and Yanaihara, N. (1986). Circadian cycles in VIP content and VIP stimulation of cyclic AMP accumulation in the rat pineal gland.Peptides 7193–196.

    Google Scholar 

  • Karsch, F. J., Bittman, E. L., Foster, D. L., Goodman, R. L., Legan, S. J., and Robinson, J. E. (1984). Neuroendocrine basis of seasonal reproduction.Rec. Prog. Horm. Res. 40185–222.

    Google Scholar 

  • Klein, D. C., Sugden, D., and Weller, J. L. (1983). Postsynaptic alpha adrenergic receptors potentiate the beta adrenergic stimulation of pineal serotonin N-acetyltransferase.Proc. Natl. Acad. Sci. USA 80599–603.

    Google Scholar 

  • Korf, H. W., and Møller, M. (1984). The innervation of the mammalian pineal gland with special reference to central pinealopetal projection. InPineal Research Reviews (R. J. Reiter, Ed.), A. R. Liss, New York, pp. 41–87.

    Google Scholar 

  • Korf, H. W., and Møller, M. (1985). The central innervation of the mammalian pineal organ. InThe Pineal Gland. Current State of Pineal Research (B. Mess, Cs. Rúzsás, L. Tima, and P. Pévet, Eds.), Académiai Kiadó, Budapest, pp. 47–69.

    Google Scholar 

  • Laudon, M., and Zisapel, N. (1986). Characterization of central melatonin receptors using125I-melatonin.FEBS Lett. 1979–13.

    Google Scholar 

  • Lissoni, P., Esposti, D., Esposti, G., Resentini, M., Morabito, F., Fumagalli, P., Santagostino, A., Delilata, G., and Fraschini, F. (1986). A clinical study on the relationship between the pineal gland and the opioid system.J. Neural. Transm. 6563–73

    Google Scholar 

  • Lowenstein, P. R., and Cardinali, D. P. (1983). Characterization of flunitrazepam andβ-carboline high affinity binding in bovine pineal gland.Neuroendocrinology 37150–154.

    Google Scholar 

  • Lowenstein, P. R., Pereyra, E. N., Gonzalez Solveyra, C., and Cardinali, D. P. (1984a). Effect of naloxone on the nocturnal rise of rat pineal melatonin content.Eur. J. Pharm. 98261–264.

    Google Scholar 

  • Lowenstein, P. R., Rosenstein, R., Caputti, E., and Cardinali, D. P. (1984b). Benzodiazepine binding sites in human pineal gland.Eur. J. Pharm. 106399–403.

    Google Scholar 

  • Lowenstein, P. R., Gonzalez Solveyra, C., Keller Sarmiento, M. I., and Cardinali, D. P. (1985). Benzodiazepines decrease norepinephrine release from rat pineal nerves by acting on peripheral type binding sites.Acta Physiol. Pharmacol. Latinoam. 35441–449.

    Google Scholar 

  • Matthew, E., Parfitt, A. G., Sugden, D., Engelhardt, D. L., Zimmerman, E. A., and Klein, D. C. (1984). Benzodiazepines: Rat pinealocyte binding sites and aumentation of norepinephrine stimulated N-acetyltransferase activity.J. Pharmacol. Exp. Ther. 228434–438.

    Google Scholar 

  • Meyer, A. C., Nieuwenhuis, J. J., Kociszewska, V. C., Joubert, W. S., and Meyer, B. J. (1986). Dihydropyridine calcium antagonists depress the amplitude of the plasma melatonin cycle in baboons.Life Sci. 391563–1570.

    Google Scholar 

  • Mizobe, F., and Kurokawa, M. (1978). Induction of a specific protein by oestradiol in rat pineals in culture.FEBS Lett. 8745–48.

    Google Scholar 

  • Moeller, H., Goecke, B., and Gupta, D. (1984). Evidence for the presence of androgen receptors in the bovine pineal gland.Neuroendocrinol. Lett. 6311–318.

    Google Scholar 

  • Møller, M., and Korf, H.-W. (1987). Neural connections between the brain and the pineal gland of the golden hamster (Mesocricetus auratus). Tracer studies by use of horseradish peroxidase in vivo and in vitro.Cell Tissue Res. 247145–153.

    Google Scholar 

  • Møller, M., Reuss, S., Olcese, J., Stehle, J., and Vollrath, L. (1987). Central neural control of pineal melatonin synthesis in the rat.Experientia 43186–187.

    Google Scholar 

  • Mouren, P., Claustrat, B., Vitte, P. A., Brun, J., Harthe, C., and David, M. (1986). Plasma ACTH and catecholamines, plasma and pineal melatonin levels after acute injection of des-tyrosyl gammaendorphin in the rat.Neuroendocrinol. Lett. 8283–288.

    Google Scholar 

  • Niles, L. P. (1987).3H-Melatonin binding in membrane and cytosol fractions from rat and calf brain.J. Pineal Res. 489–98.

    Google Scholar 

  • Niles, L. P., Wong, V. W., Mishra, R. K., and Brown, G. M. (1979). Melatonin receptors in brain.Eur. J. Pharmacol. 55219–220.

    Google Scholar 

  • Nishizuka, Y. (1984). Membrane phospholipids and the mechanism of action of hormones. InEndocrinology (F. Labrié and L. Prouxl), Excerpta Medica, Amsterdam, pp. 33–40.

    Google Scholar 

  • Nock, B., Blaustein, J. D., and Feder, H. H. (1981). Changes in noradrenergic transmission alter the concentration of cytoplasmic progestin receptors in hypothalamus.Brain Res. 207371–396.

    Google Scholar 

  • Oaknin, S., Vaughan, M. K., Troiani, M. E., and Reiter, R. J. (1986). Alpha-melanocyte stimulating hormone: A circadian rhythm in the hamster pineal gland.Neuroendocrinol. Lett. 8141–147.

    Google Scholar 

  • Oaknin, S., Vaughan, M. K., Troiani, M. E., Vaughan, G. M., and Reiter, R. J. (1987). Injections ofα-melanocyte-stimulating hormone affect pineal serotonin, melatonin and N-acetyltransferase activity.Comp. Biochem. Physiol. Part C 8623–27.

    Google Scholar 

  • Pelayo, F., Dubocovich, M. L., and Langer, S. Z. (1977). Regulation of noradrenergic release in the rat pineal through a negative feedback mechanism mediated by presynapticα-adrenoceptors.Eur. J. Pharm. 69421–427.

    Google Scholar 

  • Quirion, R. (1984). High density of3H-Ro 5-4864 binding in the pineal gland.Eur. J. Pharm. 102559–560.

    Google Scholar 

  • Reiter, R. J. (1983). Pineal gland: An intermediary between the environment and the endocrine system.Psychoneuroendocrinology 831–40.

    Google Scholar 

  • Reiter, R. J., Trakulrungsi, W. K., Trakulrungsi, C., Vriend, J., Morgan, W. W., Vaughan, M. K., Johnson, L. V., and Richardson, B. A. (1982). Pineal melatonin production: Endocrine and age effects. InMelatonin Rhythm Generating System (D. C. Klein, Ed.), Karger, Basel, pp. 143–154.

    Google Scholar 

  • Reuss, S., and Schröder, H. (1987). Neuropeptide Y effects on pineal melatonin synthesis in the rat.Neurosci. Lett. 74158–162.

    Google Scholar 

  • Rollag, M. D., Chen, H. J., Ferguson, B. N., and Reiter, R. J. (1979). Pineal melatonin content throughout the hamster estrous cycle.Proc. Soc. Exp. Biol. Med. 162211–213.

    Google Scholar 

  • Romero, J. A., Zatz, M., Kebabian, J. W., and Axelrod, J. (1975). Circadian cycles in binding of3H-alprenolol toβ-adrenergic receptor sites in rat pineal.Nature 258435–436.

    Google Scholar 

  • Schon, F., Allen, J. M., Yeats, J. C., Allen, Y. C., Ballesta, J., Polak, J. M., Kelly, J. S., and Bloom, S. R. (1985). Neuropeptide Y innervation of the rodent pineal gland and cerebral vessels.Neurosci. Lett. 5765–71.

    Google Scholar 

  • Schröder, H. (1986). Neuropeptide Y (NPY)-like immunoreactivity in peripheral and central nerves fibres of the golden hamster (Mesocricetus auratus) with special respect to pineal gland innervation.Histochemistry 85321–325.

    Google Scholar 

  • Schröder, H., and Vollrath, L. (1986). Neuropeptide Y (NPY)-like immunoreactivity in the guinea-pig pineal organ.Neurosci. Lett. 63285–289.

    Google Scholar 

  • Shiotani, Y., Yamano, M., Shiosaka, S., Emson, P. C., Hillyard, C. V., Girgis, S., and MacIntyre, I. (1986). Distribution and origins of substance P (S-P), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY) containing nerve fibers in the pineal gland of gerbils.Neurosci. Lett. 70187–192.

    Google Scholar 

  • Smith, T. L., Eichberg, J., and Hauser, G. (1979). Postsynaptic localization of the alpha receptor-mediated stimulation of phosphatidylinositol turnover in pineal gland.Life Sci. 242179–2184.

    Google Scholar 

  • Stumpf, W., and Sar, M. (1977). Steroid hormone target cells in the periventricular brain: Relationship to peptide hormone-producing cells.Fed. Proc. 361973–1983.

    Google Scholar 

  • Sugden, D., and Klein, D. C. (1984). Rat pinealα 1-adrenoceptors: Identification and characterization using125I-iodo-2-[β-(4-hydroxyphenyl-)ethyl-aminomethyl] tetralone.Endocrinology 114435–440.

    Google Scholar 

  • Sugden, A. L., Sugden, D., and Klein, D. C. (1986). Essential role of calcium influx in the adrenergic regulation of cAMP and cGMP in rat pinealocytes.J. Biol. Chem. 26111608–11612.

    Google Scholar 

  • Sugden, A. L., Sugden, D., and Klein, D. C. (1987).α 1-Adrenoceptor activation elevates cytosolic calcium in rat pinealocytes by increasing net influx.J. Biol. Chem. 262741–745.

    Google Scholar 

  • Sugden, D., Vanecek, J., Klein, D. C., Thomas, T. P., and Anderson, W. B. (1985b). Activation of protein kinase C potentiates isoprenaline induced cyclic AMP accumulation in pinealocytes.Nature 314359–361.

    Google Scholar 

  • Sugden, D., Namboodiri, M. A. A., Klein, D. C., Pierce, J. E., Grady, R., and Mefford, I. N. (1985a). Ovine pinealα 1-adrenoceptors: Characterization and evidence for a functional role in the regulation of serum melatonin.Endocrinology 1161960–1967.

    Google Scholar 

  • Suranyi-Cadotte, B., Lal, S., Nair, N. P. V., Lafaille, F., and Quirion, R. (1987). Coexistence of central and peripheral benzodiazepine binding sites in the human pineal gland.Life. Sci. 401537–1543.

    Google Scholar 

  • Tallman, J. F., and Gallagher, D. W. (1985). The GABA-ergic system: A locus of benzodiazepine action.Annu. Rev. Neurosci. 821–44.

    Google Scholar 

  • Taylor, R. L., Albuquerque, M. L. C., and Burt, D. R. (1980). Muscarinic receptors in pineal.Life Sci. 262195–2200.

    Google Scholar 

  • Thompson, M. A., Wooley, D. E., Gietzen, D. W., and Conway, S. (1983). Catecholamine synthesis inhibitors acutely modulate3H-estradiol binding by specific brain areas and pituitary in overiectomized rats.Endocrinology 113855–865.

    Google Scholar 

  • Tsuchiya, M., Kabu, K., Matsuda, M., Raneko, T., and Yanaihara, N. (1987). Demonstration of receptors specific for peptide N-terminal histidine and C-terminal isoleucine (PHI) using rat PHI and rat dispersed pineal cells.Biomed. Res. 845–53.

    Google Scholar 

  • Vacas, M. I., and Cardinali, D. P. (1980). Binding sites for melatonin in bovine pineal gland.Hormone Res. 13121–131.

    Google Scholar 

  • Vacas, M. I., Lowenstein, P. R., and Cardinali, D. P. (1979). Characterization of a cytosol progesterone receptor in bovine pineal gland.Neuroendocrinology 2484–89.

    Google Scholar 

  • Vacas, M. I., Lowenstein, P. R., and Cardinali, D. P. (1980). Dihydroergocryptine binding sites in bovine and rat pineal glands.J. Auton. Nerv. Syst. 2305–314.

    Google Scholar 

  • Vacas, M. I., Keller Sarmiento, M. I., Pereyra, E. N., and Cardinali, D. P. (1982). Early changes in cAMP and melatonin levels of rat pineal gland after superior cervical ganglionectomy.Neuroendocrinol. Lett. 4267–271.

    Google Scholar 

  • Vacas, M. I., Keller Sarmiento, M. I., and Cardinali, D. P. (1985). Interaction betweenα andβ-adrenoceptors in rat pineal adenosine 3′,5′-monophosphate phosphodiesterase activation.J. Neural Transm. 62295–304.

    Google Scholar 

  • Vacas, M. I., Keller Sarmiento, M. I., Etchegoyen, G. S., Pereyra, E. N., Gimeno, M., and Cardinali, D. P. (1987a). Involvement of the 5-lipoxygenase pathway in norepinephrine-stimulation of rat pineal melatonin synthesis.Neuroendocrinology 46412–416.

    Google Scholar 

  • Vacas, M. I., Keller Sarmiento, M. I., Pereyra, E. N., Etchegoyen, G. S., and Cardinali, D. P. (1987b). In vitro effects of adenphypophysial hormones on rat pineal melatonin content and release.Mol. Cell. Endocrinol. 5023–27.

    Google Scholar 

  • Vacas, M. I., Keller Sarmiento, M. I., Pereyra, E. N., Etchegoyen, G. S., and Cardinali, D. P. (1987c).In vitro effect of neuropeptide Y on melatonin and norepinephrine release in rat pineal gland.Cell. Mol. Neurobiol. 7309–315.

    Google Scholar 

  • Vanecek, J., Sugden, D., Weller, J. L., and Klein, D. C. (1985). Atypical synergisticα 1- andβ-adrenergic regulation of adenosine 3′,5′-monophosphate and guanosine 3′-5′ monophosphate in rat pinealocytes.Endocrinology 1162167–2173.

    Google Scholar 

  • Vanecek, J., Sugden, D., Weller, J. L., and Klein, D. C. (1986). See-saw signal processing in pinealocytes involves reciprocal changes in theα 1-acrenergic component of the cyclic GMP response and theβ-adrenergic component of the cyclic AMP response.J. Neurochem. 47678–686.

    Google Scholar 

  • Weiner, N. (1980). Drugs that inhibit adrenergic nerves and block adrenergic receptors. InThe Pharmacological Basis of Therapeutics (A. G. Gilman, L. S. Goodman, and A. Gilman, Eds.), Macmillan, New York, pp. 176–210.

    Google Scholar 

  • Werner, S., Brismar, K., Wetterberg, L., and Eneroth, P. (1981). Circadian rhythms of melatonin, prolactin, growth hormone and cortisol in patients with pituitary adenoma empty sella turcica syndrome and Cushing's syndrome due to adrenal tumours.Adv. Biosci. 29357–363.

    Google Scholar 

  • Wurtman, R. J., and Axelrod, J. (1965). The pineal gland.Sci. Am. 21350–60.

    Google Scholar 

  • Zatz, M. (1985a). Denervation supersensitivity of the rat pineal to norepinephrine stimulated3H-inositide turnover revealed by lithium and a convenient procedure.J. Neurochem. 4595–100.

    Google Scholar 

  • Zatz, M. (1985b). Phorbol esters mimicα-adrenergic potentiation of serotonin N-acetyltransferase induction in the rat pineal.J. Neurochem. 45637–642.

    Google Scholar 

  • Zatz, M., and Brownstein, M. J. (1979). Central depressants rapidly reduce nocturnal serotonin N-acetyltransferase activity in the rat pineal.Brain Res. 160381–385.

    Google Scholar 

  • Zatz, M., and Romero, J. A. (1978). Effect of calcium-free medium on the induction of serotonin N-acetyltransferase in the rat pineal.Biochem. Pharmacol. 272549–2553.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardinali, D.P., Vacas, M.I. Cellular and molecular mechanisms controlling melatonin release by mammalian pineal glands. Cell Mol Neurobiol 7, 323–337 (1987). https://doi.org/10.1007/BF00733786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00733786

Key words

Navigation