Skip to main content
Log in

Neuropeptide gene expression and neural activity: Assessing a working hypothesis in nucleus caudalis and dorsal horn neurons expressing preproenkephalin and preprodynorphin

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The working hypothesis that neuropeptide gene expression in a neuron is an indicator of that neuron's physiological activity is discussed.

  2. 2.

    Representative examples from the literature are presented to support the hypothesis.

  3. 3.

    Further, we discuss the regulation of expression of two opioid peptides, preproenkephalin and preprodynorphin, in laminae I and II of the spinal cord and in nucleus caudalis of the trigeminal nuclear complex, where they may play a role in pain modulation.

  4. 4.

    The expression of the opioid peptide genes can be induced by both painful and nonnoxious stimuli in neurons in time-dependent and sensory-specific fashions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akil, H., Watson, S. J., Young, E., Lewis, M. E., Khachaturian, H., and Walker, J. M. (1984). Endogenous opioids: Biology and function.Annu. Rev. Neurosci. 7223–255.

    Google Scholar 

  • Andrisani, O. M., Zhu, Z., Pot, D. A., and Dixon, J. E. (1989). In vitro transcription directed from the somatostatin promoter is dependent upon a purified 43-kDa-binding protein.Proc. Natl. Acad. Sci. USA 862181–2185.

    Google Scholar 

  • Angulo, J. A., Davis, L. G., Burkhart, B. A., and Christoph, G. R. (1986). Reduction of striatal dopaminergic neurotransmission elevates striatal proenkephalin mRNA.Eur. J. Pharm. 130341–343.

    Google Scholar 

  • Aronin, U., DiFiglia, M., Liotta, A. S., and Martin, J. B. (1981). Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn.J. Neurosci. 1561–567.

    Google Scholar 

  • Arvidsson, J., and Ygge, J. (1986). A quantitative study of the effects of neonatal capsaicin treatment and of subsequent peripheral nerve transection in the adult rat.Brain Res. 397130–136.

    Google Scholar 

  • Atchison, M. L. (1988). Enhancers: Mechanisms of action and cell specificity.Annu. Rev. Cell Biol. 4127–153.

    Google Scholar 

  • Baldino, F., Jr., and Davis, L. G. (1986). Glucocorticoid regulation of vasopressin messenger RNA. In Uhl, G. R. (ed.), In SituHybridization in Brain, Plenum Press, New York, pp. 97–116.

    Google Scholar 

  • Baldino, F., Jr., Fitzpatrick-McElligott, S., O'Kane, T. M., and Gozes, I. (1988a). Hormonal regulation of somatostatin messenger RNA.Synapse 2317–325.

    Google Scholar 

  • Baldino, F., Jr., O'Kane, T. M., Fitzpatrick-McElligott, S., and Wolfson, B. (1988b). Coordinate hormonal and synaptic regulation of vasopressin messenger RNA.Science 241978–981.

    Google Scholar 

  • Barber, R. P., Vaughn, J. E., Slemmon, J. R., Salvaterra, P. M., Roberts, E., and Leeman, S. E. (1979). The origin, distribution and synaptic relationships of substance P axons in rat spinal cord.J. Comp. Neurol. 184331–352.

    Google Scholar 

  • Barinaga, M., Bilezikjian, L. M., Vale, W. W., Rosenfeld, M. G., and Evans, R. M. (1989). Independent effects of growth hormone releasing factor on growth hormone release and gene transcription.Nature 314279–281.

    Google Scholar 

  • Basbaum, A. I., and Fields, H. L. (1984). Endogenous pain control system: Brainstem spinal pathways and endorphin circuitry.Annu. Rev. Neurosci. 7309–338.

    Google Scholar 

  • Beal, J. A., and Knight, D. S. (1987). Classification of aberrant primary afferents in the substantia gelatinosa of the rat following neonatal capsaicin treatment.Neurosci. Lett. 74139–144.

    Google Scholar 

  • Belasco, J. G., and Higgins, C. F. (1988). Mechanisms of mRNA decay in bacteria: A perspective.Gene 7215–23.

    Google Scholar 

  • Belasco, J. G., Nilsson, G., von Gabain, A., and Cohen, S. N. (1986). The stability of E. coli gene transcripts is dependent on determinants localized to specific mRNA segments.Cell 46245–251.

    Google Scholar 

  • Bennett, G. J., Hayashi, H., Abdelmoumene, M., and Dubner, R. (1979). Physiological properties of stalked cells of the substantia gelatinosa intracellularly stained with horseradish peroxidase.Brain Res. 164285–289.

    Google Scholar 

  • Bennefitt, G. J., Abdelmoumene, H., Hayashi, H., and Dubner, R. (1980). Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase.J. Comp. Neurol. 194809–827.

    Google Scholar 

  • Bennett, G. J., Ruda, M. A., Gobel, S., and Dubner, R. (1982). Enkephalin immunoreactive stalked cells and lamina IIb islet cells in cat substantia gelatinosa.Brain Res. 240162–166.

    Google Scholar 

  • Bernstein, P., Peltz, S. W., and Ross, J. (1989). The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro.Mol. Cell. Biol. 9(2):659–670.

    Google Scholar 

  • Botticelli, L. J., Cox, B. M., and Goldstein, A. (1981). Immunoreactive dynorphin in mammalian spinal cord and dorsal root ganglia.Proc. Natl. Acad. Sci. USA 787783–7786.

    Google Scholar 

  • Brent, G. A., Larsen, P. R., Harney, J. W., Koenig, R. J., and Moore, D. D. (1989). Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co-transfected B type thyroid hormone receptor.J. Biol. Chem. 264(1):178–182.

    Google Scholar 

  • Bruhn, T. O., Sutton, R. E., Rivier, C. L., and Vale, W. W. (1984). Corticotropin-releasing factor regulates proopiomelanocortin messenger ribonucleic acid levels in vivo.Neuroendocrinology 39170–175.

    Google Scholar 

  • Burbach, J. P., DeHoop, M. J., Schmale, H., Richter, D., De Kloet, R., Ten Haaf, J. A., and De Wied, D. (1984). Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei.Neuroendocrinology 39582–584.

    Google Scholar 

  • Burbach, J. P. H., Liu, B., Voorhuis, T. A. M., and Van Tol, H. H. M. (1988). Diurnal variation in vasopressin and oxytocin messenger RNAs in hypothalamic nuclei of the rat.Mol. Br. Res. 4157–160.

    Google Scholar 

  • Campbell, D. J., and Habener, J. F. (1986). Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat.J. Clin. Invest. 7831–39.

    Google Scholar 

  • Carlton, S. M., McNeill, D. L., Chung, K., and Coggeshall, R. E. (1987). A light and electron microscopic level analysis of calcitonin gene-related peptide (CGRP) in the spinal cord of the primate: An immunohistochemical study.Neurosci. Lett. 82145–150.

    Google Scholar 

  • Cervero, F., and Iggo, A. (1980). The substantia gelatinosa of the spinal cord. A critical review.Brain 103717–772.

    Google Scholar 

  • Cervero, F., and McRitchie, H. A. (1981). Neonatal capsaicin and thermal nociception: A paradox.Brain Res. 215414–418.

    Google Scholar 

  • Chan-Palay, V., and Palay, S. L. (1977). Ultrastructural identification of substance P cells and their processes in rat sensory ganglia and their terminals in the spinal cord by immunocytochemistry.Proc. Natl. Acad. Sci. USA 744050–4054.

    Google Scholar 

  • Charnay, Y., Christian, P., Dray, F., and Dubois, P.-M. (1984). Distribution of enkephalin in human fetus and infant spinal cord: An immunofluorescence study.J. Comp. Neurol. 223415–423.

    Google Scholar 

  • Cho, H. J., and Basbaum, A. I. (1988). Increased staining of immunoreactive dynorphin cell bodies in the deafferented spinal cord of the rat.Neurosci. Lett. 84125–130.

    Google Scholar 

  • Cleveland, D. W. (1988). Autoregulated instability of tubulin mRNAs: A novel eukaryotic regulatory mechanism.TIBS 13339–343.

    Google Scholar 

  • Comb, M., Birnberg, N. C., Seasholtz, A., Herbert, E., and Goodman, H. M. (1986). A cyclic AMP-and phorbol ester-inducible DNA element.Nature 323353–356.

    Google Scholar 

  • Comb, M., Mermod, N., Hyman, S. E., Pearlberg, J., Ross, M. E., and Goodman, H. M. (1988). Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription.EMBO 7(12):3793–3805.

    Google Scholar 

  • Cote, G. J., and Gagel, R. F. (1986). Dexamethasone differentially affects the levels of calcitonin and calcitonin gene-related peptide mRNAs expressed in a human medullary thyroid carcinoma cell line.J. Biol. Chem. 26115524–15528.

    Google Scholar 

  • Cruz, L., and Basbaum, A. I. (1985). Multiple opioid peptides and the modulation of pain: Immunohistochemical analysis of dynorphin and enkephalin in the trigeminal nucleus caudalis and spinal cord of the cat.J. Comp. Neurol. 240331–348.

    Google Scholar 

  • Cuello, A. C., and Kanazawa, I. (1978). The distribution of substance P immunoreactive fibers in the rat central nervous system.J. Comp. Neurol. 178129–156.

    Google Scholar 

  • Cuello, A. C., DelFiacco, M., and Paxinos, G. (1978). The central and peripheral ends of the substance P-containing sensory neurons in the rat trigeminal system.Brain Res. 152499–509.

    Google Scholar 

  • Cuello, A. C., Gamse, R., Holzer, P., and Lembeck, F. (1981). Substance P immuno-reactive neurons following neonatal administration of capsaicin.Naunyn-Schmiedeberg Arch. Pharmacol. 345185–194.

    Google Scholar 

  • Danoff, A., and Shields, D. (1988). Differential translation of two distinct preprosomatostatin messenger RNAs.J. Biol. Chem. 263(31):16461–16466.

    Google Scholar 

  • Davis, L. G., Arentzen, R., Reid, J. M., Manning, R. W., Wolfson, B., Lawrence, K. L., and Baldino, F., Jr. (1986). Glucocorticoid sensitivity of vasopressin mRNA levels in the paraventricular nucleus of the rat.Proc. Natl. Acad. Sci. 831145–1149.

    Google Scholar 

  • DeLanerolle, N. C., and LaMotte, C. C. (1982). The human spinal cord: Substance P and methionine-enkephalin immunoreactivity.J. Neurosci. 21369–1386.

    Google Scholar 

  • DeLanerolle, N. C., and LaMotte, C. C. (1983). Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. I. Substance P immunoreactivity.Brain Res. 27431–49.

    Google Scholar 

  • DelFiacco, M., and Cuello, A. C. (1980). Substance P- and enkephalin-containing neurons in the rat trigeminal system.Neuroscience 5803–815.

    Google Scholar 

  • Diamond, D. J., and Goodman, H. M. (1985). Regulation of growth hormone messenger RNA synthesis by dexamethasone and triiodothyronine: Transcriptional rate and mRNA stability changes in pituitary tumor cells.J. Mol. Biol. 18141–62.

    Google Scholar 

  • DiGiulio, A. M., Borella, F., Mantegazza, P., Hong, J.-S., Panozzo, C., Zanoni, R., and Gorio, A. (1985a). Structural and biochemical alterations in the dorsal horn of the spinal cord caused by peripheral nerve lesions.Peptides 6249–256.

    Google Scholar 

  • DiGiulio, A. M., Mantegazza, P., Dona, M., and Gorio, A. (1985b). Peripheral nerve lesions cause simultaneous alterations of substance P and enkephalin levels in the spinal cord.Brain Res. 342405–408.

    Google Scholar 

  • Dobner, P. R., Tischler, A. S., Lee, Y. C., Bloom, S. R., and Donahue, S. R. (1988). Lithium dramatically potentiates neurotensin/neuromedin N gene expression.J. Biol. Chem. 26313983–13986.

    Google Scholar 

  • Douglass, J., Civelli, O., and Herbert, E. (1984). Polyprotein gene expression: Generation of diversity of neuroendocrine peptides.Annu. Rev. Biochem. 53665–715.

    Google Scholar 

  • Dubner, R., and Bennett, G. J. (1983). Spinal and trigeminal mechanisms of nociception.Annu. Rev. Neurosci. 6381–418.

    Google Scholar 

  • Eberwine, J. H., and Roberts, J. L. (1984). Glucocorticoid regulation of pro-opiomelanocortin gene transcription in the rat pituitary.J. Biol. Chem. 2592166–2170.

    Google Scholar 

  • Elde, R., Hokfelt, T., Johansson, O., and Terenius, L. (1976). Immunohistochemical studies using antibodies to leucine-enkephalin: Initial observations on the nervous system of the rat.Neuroscience 1349–351.

    Google Scholar 

  • Emson, P. C. (ed.) (1983).Chemical Neuroanatomy, Raven Press, New York.

    Google Scholar 

  • Faccini, E., Uzumaki, H., Govoni, S., Missale, C., Spano, P. F., Covelli, V., and Trabucchi, M. (1984). Afferent fibers mediate the increase of metenkephalin elicited in rat spinal cord by localized pain.Pain 1825–31.

    Google Scholar 

  • Fallon, J. H., and Leslie, F. M. (1986). Distribution of dynorphin and enkephalin peptides in the rat brain.J. Comp. Neurol. 249293–336.

    Google Scholar 

  • Fink, J. S., Verhave, M., Kasper, S., Tsukada, T., Mandel, G., and Goodman, R. H. (1988). The CGTA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer.Proc. Natl. Acad. Sci. USA 856662–6666.

    Google Scholar 

  • Finley, J. C. W., Maderdrut, J. L., and Petrusz, P. (1981). The immunocytochemical localization of enkephalin in the central nervous system of the rat.J. Comp. Neurol. 198541–565.

    Google Scholar 

  • Fisher, J. M., and Scheller, R. H. (1988). Prohormone processing and the secretory pathway.J. Biol. Chem. 263(32):16515–16518.

    Google Scholar 

  • Fisher, J. M., Sossin, W., Newcomb, R., and Scheller, R. H. (1988). Multiple neuropeptides derived from a common precursor are differentially packaged and transported.Cell 54813–822.

    Google Scholar 

  • Fischer-Colbrie, R., Iacangelo, A., and Eiden, L. E. (1988). Neural and humoral factors separately regulate neuropeptide Y, enkephalin, and chromogranin A and B mRNA levels in rat adrenal medulla.Proc. Natl. Acad. Sci. 853240–3244.

    Google Scholar 

  • Fitzgerald, M. (1983). Capsaicin and sensory neurones. A review.Pain 15109–130.

    Google Scholar 

  • Fuller, R. S., Brake, A., and Thorner, J. (1989). Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease.Biochemistry 861434–1438.

    Google Scholar 

  • Gainer, H. (1981). The biology of neurosecretory neurons. InNeurosecretion and Brain Peptides (J. B. Martin, S. Reichlin, and K. L. Bick, Eds.), Raven Press, New York, pp. 5–20.

    Google Scholar 

  • Gamse, R. (1982). Capsaicin and nociception in the rat and mouse.Naunyn-Schmiedeberg Arch. Pharmacol. 320205–216.

    Google Scholar 

  • Gibson, S. J., Polak, J. M., Bloom, S. R., Sabate, I. M., Mulderry, P. M., Ghatei, M. A., McGregor, G. P., Morrison, J. F. B., Kelly, J. S., Evans, R. M., and Rosenfeld, M. G. (1984). Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and eight other species.J. Neurosci. 43101–3111.

    Google Scholar 

  • Glazer, E. J., and Basbaum, A. I. (1981). Immunohistochemical localization of leucine-enkephalin in the spinal cord of the cat: Enkephalin-containing marginal neurons and pain modulation.J. Comp. Neurol. 196377–389.

    Google Scholar 

  • Gluschankof, P., Gomez, S., Morel, A., and Cohen, P. (1987). Enzymes that process somatostatin precursors.J. Biol. Chem. 262(20):9615–9620.

    Google Scholar 

  • Gobel, S. (1975). Golgi studies of the substantia gelatinosa neurons in the trigeminal nucleus.J. Comp. Neurol. 162397–415.

    Google Scholar 

  • Gobel, S. (1978). Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis).J. Comp. Neurol. 180395–414.

    Google Scholar 

  • Gobel, S., and Falls, W. M. (1979). Anatomical observations of horseradish peroxidase-filled terminal primary axonal arborizations in layer II of the substantia gelatinosa of Rolando.Brain Res. 175335–340.

    Google Scholar 

  • Gobel, S., Falls, W. M., Bennett, G. J., Abdelmoumene, M., Hayashi, H., and Humphrey, E. (1980). An EM analysis of the synaptic connections of horseradish peroxidase-filled stalked cells and islet cells in the substantia gelatinosa of the adult cat spinal cord.J. Comp. Neurol. 194781–807.

    Google Scholar 

  • Hammer, R. E., Brinster, R. L., Rosenfeld, M. G., Evans, R. M., and Mayo, K. E. (1985). Expression of human growth hormone-releasing factor in transgenic mice results in increased somatic growth.Nature 315413–416.

    Google Scholar 

  • Harlan, R. E., Shivers, B. D., Romano, G. J., Howells, R. D., and Pfaff, D. W. (1987). Localization of preproenkephalin mRNA in the rat brain and spinal cord byin situ hybridization.J. Comp. Neurol. 258159–184.

    Google Scholar 

  • Hayes, A. G., Scadding, J. W., Skingle, M., and Tyers, M. B. (1981). Effects of neonatal administration of capsaicin on nociceptive thresholds in the mouse and rat.J. Pharm. Pharmacol. 33183–185.

    Google Scholar 

  • Heinrich, G., Kronenberg, H. M., Potts, J. T., Jr., and Habener, J. F. (1983). Parathyroid hormone messenger ribonucleic acid: Effects of calcium on cellular regulation in vitro.Endocrinology 112449–458.

    Google Scholar 

  • Helke, C. J., DiMicco, J. A., Jacobowitz, D. M., and Kopin, I. J. (1981). Effect of capsaicin administration to neonatal rats on the substance P content of discrete CNS regions.Brain Res. 222428–431.

    Google Scholar 

  • Hökfelt, T., Kellerth, J. O., Nilsson, G., and Pernow, B. (1975a). Substance P: Localization in the central nervous system and in some primary sensory neurons.Science 190889–890.

    Google Scholar 

  • Hökfelt, T., Kellerth, J. O., Nilsson, G., and Pernow, B. (1975b). Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurones.Brain Res. 100235–252.

    Google Scholar 

  • Hökfelt, T., Ljungdahl, A., Terenius, L., Elde, R., and Nilsson, G. (1977a). Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and substance P.Proc. Natl. Acad. Sci. USA 743081–3085.

    Google Scholar 

  • Hökfelt, T., Elde, R., Johansson, O., Terenius, L., and Stein, L. (1977b). The distribution of enkephalin-immunoreactive cell bodies in the rat central nervous system.Neurosci. Lett. 525–31.

    Google Scholar 

  • Hollt, V., Haarmann, I., Millan, M. J., and Hertz, A. (1987). Prodynorphin gene expression is enhanced in the spinal cord of chronic arthritic rats.Neurosci. Lett. 7390–94.

    Google Scholar 

  • Holzer, P., Jurna, I., Gamse, R., and Lembeck, F. (1979). Nociceptive threshold after neonatal capsaicin treatment.Eur. J. Pharmacol. 58511–514.

    Google Scholar 

  • Hyman, S. E., Comb, M., Lin, Y. S., Pearlberg, J., Green, M. R., and Goodman, H. M. (1988). A common trans-acting factor is involved in transcriptional regulation of neurotransmitter genes by cyclic AMP.Mol. Cell. Biol. 8(10):4225–4233.

    Google Scholar 

  • Hyman, S. E., Comb, M., Pearlberg, J., and Goodman, H. M. (1989). An AP-2 element acts synergistically with the cyclic AMP- and phorbol ester-inducible enhancer of the human proenkephalin gene.Mol. Cell. Biol. 9(1):321–324.

    Google Scholar 

  • Iadarola, M. J., Douglass, J., Civelli, O., and Naranjo, J. R. (1986). Increased spinal cord dynorphin mRNA during peripheral inflammation.NIDA Res. Monogr. 75406–409.

    Google Scholar 

  • Iadarola, M. J., Brady, L. S., Draisci, G., and Dubner, R. (1988a). Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: Stimulus specificity, behavioral parameters and opioid receptor binding.Pain 35313–326.

    Google Scholar 

  • Iadarola, M. J., Douglass, J., Civelli, O., and Naranjo, R. (1988b). Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: Evidence using cDNA hybridization.Brain Res. 455205–212.

    Google Scholar 

  • Ilan, J. (Ed.) (1987).Translational Regulation of Gene Expression. Cell, Plenum Press, New York.

    Google Scholar 

  • Iversen, L. L. (1976). Uptake processes for biogenic amines. In (L. Iverson, S. L. Iverson and S. Snyder, Eds.),Handbook of Psychopharmacology, Raven Press, New York, pp. 381–442.

    Google Scholar 

  • Iversen, L. L. (1985). Function and distribution of peptides in the nervous system.Biochem. Soc. Trans. 13(1):35–37.

    Google Scholar 

  • Jacquin, M. F., Renehan, W. E., Mooney, R. D., and Rhoades, R. W. (1986). Structure-function relationships in rat medullary and cervical dorsal horns. I. Trigeminal primary afferents.J. Neurophysiol. 551153–1186.

    Google Scholar 

  • Jancso, G., Kiraly, E., and Jancso-Gabor, A. (1977). Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons.Nature 270741–743.

    Google Scholar 

  • Jansco, H., Hokfelt, T., Lundberg, J. M., Kiraly, E., Halesz, N., Nilsson, G., Terenius, L., Rehfeld, J., Steinbusch, H., Verhofstad, A., Elde, R., Said, S., and Brown, M. (1981). Immunohistochemical studies on the effect of capsaicin on spinal and medullary peptide and monoamine neurons using antisera to substance P, gastrin/CCK, somatostain, VIP, enkephalin, neurotensin and 5-Hydroxytryptamine.J. Neurocytol. 10963–980.

    Google Scholar 

  • Kabnick, K. S., and Housman, D. E. (1988). Determinants that contribute to cytoplasmic stability of human c-fos and B-globin mRNAs are located at several sites in each mRNA.Mol. Cell. Biol. 8(8):3244–3250.

    Google Scholar 

  • Kaplan, L. M., Gabriel, S. M., Koenig, J. I., Sunday, M. E., Spindel, E. R., Martin, J. B., and Chin, W. W. (1988). Galanin is an extrogen-inducible, secretory product of the rat anterior pituitary.Proc. Natl. Acad. Sci. 857408–7412.

    Google Scholar 

  • Kelly, R. B. (1988). Pathways of protein secretion in eukaryotes.Science 23025–32.

    Google Scholar 

  • Kelsey, J. E., Watson, S. J., Burke, S., Akil, H., and Roberts, J. L. (1986). Characterization of proopiomelanocortin mRNA detected by in situ hybridization.J. Neurosci. 638–42.

    Google Scholar 

  • Khachaturian, H., Watson, S. J., Lewis, M. E., Coy, D., Goldstein, A., and Akil, H. (1982). Dynorphin immunocytochemistry in the rat central nervous system.Peptides 3941–954.

    Google Scholar 

  • Kley, N., Loeffler, J. P., and Hollt, V. (1987). Ca2+-dependent histaminergic regulation of proenkephalin mRNA levels in cultured adrenal chromaffin cells.Neuroendocrinology 4689–92.

    Google Scholar 

  • Koller, K. J., Wolff, R. S., Warden, M. K., and Zoeller, R. T. (1987). Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus.Proc. Natl. Acad. Sci. 847329–7333.

    Google Scholar 

  • LaMotte, C. C., and deLanerolle, N. C. (1983). Ultrastructure of chemically defined nervous systems in the dorsal horn of the monkey. II. Methionine-enkephalin immunoreactivity.Brain Res. 27451–63.

    Google Scholar 

  • Light, A. R., and Perl, E. R. (1979). Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers.J. Comp. Neurol. 186133–150.

    Google Scholar 

  • Lightman, S. L., and Young, W. S., III (1987a). Changes in hypothalamic preproenkephalin A mRNA following stress and opiate withdrawal.Nature 328643–645.

    Google Scholar 

  • Lightman, S. L., and Young, W. S., III (1987b). Vasopressin, oxytocin, dynorphin, enkephalin, and corticotrophin releasing factor mRNA stimulation in the rat.J. Physiol. (Lond.)39423–39.

    Google Scholar 

  • Ljungdahl, A., Hokfelt, T., and Nilsson, C. (1978). Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals.Neuroscience 3861–943.

    Google Scholar 

  • Loeffler, J., Kley, N., Pittius, C. W., and Hollt, V. (1985). Corticotropin-releasing factor and forskolin increase proopiomelanocortin messenger RNA levels in rat anterior and intermediate cells in vitro.Neurosci. Lett. 62383–387.

    Google Scholar 

  • Markowitz, S., Saito, K., and Moskowitz, M. A. (1988). Neurogenically mediated plasma extravasation in dura mater: Effect of ergot alkaloids.Cephalalgia 883–91.

    Google Scholar 

  • Martin, J. B., Reichlin, S., and Bick, K. L. (Eds.) (1981).Neurosecretion and Brain Peptides, Raven Press, New York.

    Google Scholar 

  • May, V., and Eipper, B. A. (1985). Regulation of peptide amidation in cultured pituitary cells.J. Biol. Chem. 260(30):16224–16231.

    Google Scholar 

  • McNeill, D. L., Coggeshall, R. E., and Carlton, S. M. (1988). A light and electron microscopic study of calcitonin gene-related peptide in the spinal cord of the rat.Exp. Neurol. 99699–708.

    Google Scholar 

  • Merchenthaler, I., Maderdrut, J. L., Altschuler, R. A., and Petrusz, P. (1986). Immunocytochemical localization of proenkephalin-derived peptides in the central nervous system of the rat.Neuroscience 17325–348.

    Google Scholar 

  • Millan, M. J. (1986). Multiple opioid systems and pain.Pain 27303–347.

    Google Scholar 

  • Millan, M. J., Millan, M. H., Pilcher, C. W. T., Cztonkowski, A., Herz, A., and Colpaert, F. C. (1985). Spinal cord dynorphin may modulate nociception via a K-opioid receptor in chronic arthritic rats.Brain Res. 340156–159.

    Google Scholar 

  • Millan, M. J., Millan, M. H., Cztonkowski, A., Hollt, V., Pilcher, C. W. T., Herz, A., and Colpaert, F. C. (1986). A model of chronic pain in the rat: Response of multiple opioid systems to adjuvant-induced arthritis.J. Neurosci. 6899–906.

    Google Scholar 

  • Miller, K. E., and Seybold, V. S. (1987). Comparison of met-enkephalin-, dynorphin A-, neurotensin-immunoreactive neurons in the cat and rat spinal cords. I. Lumbar cord.J. comp. neurol. 255293–304.

    Google Scholar 

  • Morris, B. J., Moneta, M. E., Bruggencate, G. T., and Hollt, V. (1987). Levels of prodynorphin mRNA in rat dentate gyrus are decreased during hippocampal kindling.Neurosci. Lett. 80298–302.

    Google Scholar 

  • Morris, B. J., Feasey, K. J., Bruggencate, G. T., Herz, A., and Hollt, V. (1988a). Electrical stimulation in vivo increases the expression of proenkephaline mRNA and decreases the expression of prodynorphin mRNA in rat hippocampal granule cells.85:3226–3230.

  • Morris, B. J., Hollt, V., and Herz, A. (1988b). Dopaminergic regulation of striatal proenkephalin mRNA and prodynorphin mRNA: Contrasting effects of D1 and D2 antagonists.25:525–532.

  • Morris, B. J., Hollt, V., and Herz, A. (1988c). Opioid gene expression in rat striatum is modulated via opioid receptors: Evidence from localized receptor inactivation.89:80–84.

  • Morris, B. J., Reimer, S., Hollt, V., and Herz, A. (1988d). Regulation of striatal prodynorphin mRNA by the raphe-striatal pathway.Mol. Brain Res. 415–22.

    Google Scholar 

  • Nagy, J. I. (1982). Capsaicin's action on the nervous system.Trends Neurosci. 5362–365.

    Google Scholar 

  • Nagy, J. I., and Hunt, S. P. (1983). The termination of primary afferents within the rat dorsal horn: Evidence for rearrangement following capsaicin treatment.J. Comp. Neurol. 218145–158.

    Google Scholar 

  • Nagy, J. I., Vincent, S. R., Staines, W. A., Fibiger, H. C., Reisine, T. D., and Yamumura, H. I. (1980). Neurotoxic action of capsaicin on spinal substance P neurons.Brain Res. 186435–444.

    Google Scholar 

  • Nagy, J. I., Hunt, S. P., Iversen, L. L., and Emson, P. C. (1981). Biochemical and anatomical observation on the degeneration of peptide-containing primary afferent neurons after neonatal capsaicin.Neuroscience 61923–1934.

    Google Scholar 

  • Ninkovic, M., Hunt, S. P., and Kelly, J. S. (1981). Effect of dorsal rhizotomy on the autoradiographic distribution of opiate and neurotensin receptors and neurotensin-like immunoreactivity within the rat spinal cord.Brain Res. 230111–119.

    Google Scholar 

  • Nishimori, T., Moskowitz, M. A., and Uhl, G. R. (1988). Opioid peptide gene expression in rat trigeminal nucleus caudalis neurons: Normal distribution and effects of trigeminal deafferentiation.J. Comp. Neurol. 274142–150.

    Google Scholar 

  • Nishimori, T., Buzzi, M. G., Moskowitz, M. A., and Uhl, G. R. (1989a). Preproenkephalin mRNA expression in nucleus caudalis neurons is enhanced by trigeminal stimulation.Mol. Brain. Res. (in press).

  • Nishimori, T., Buzzi, M. G., Moskowitz, M. A., and Uhl, G. R. (1989b). Differential effects of small-and large-caliber primary afferents on nucleus caudalis preproenkephalin expression. (Submitted for publication).

  • Noguchi, K., Morita, Y., Kiyama,H., Sato, M., Ono, K., and Tohyama, M. (1989). Preproenkephalin gene expression in the rat spinal cord after noxious stimuli.Mol. Brain Res. 5227–234.

    Google Scholar 

  • Normand, E., Popovici, T., Onteniente, B., Fellmann, D., Piatier-Tonneau, D., Auffray, C., and Bloch, B. (1988). Dopaminergic neurons of the substancia nigra modulate preproenkephalin A gene expression in rat striatal neurons.Brain Res. 43939–46.

    Google Scholar 

  • Ouafik, L., May, V., Keutmann, H. T., and Eipper, B. A. (1989). Developmental regulation of peptidylglycine a-amidating monooxygenase (PAM) in rat heart atrium and ventricle.J. Biol. Chem. 264(10):5839–5845.

    Google Scholar 

  • Panerai, A. E., Sacerdote, P., Brini, A., Bianchi, M., and Mantegazza, P. (1988). Central nervous system neuropeptides after peripheral nerve deafferentation.Peptides 9319–324.

    Google Scholar 

  • Price, D. D., Hayashi, H., Dubner, R., and Ruda, M. A. (1979). Functional relationships between neurons of marginal and substantia gelatinosa layers of primate dorsal horn.J. Neurophysiol. 421590–1608.

    Google Scholar 

  • Priestley, J. V., Somogyi, P., and Cuello, A. C. (1982). Immunocytochemical localization of substance P in the spinal trigeminal nucleus of the rat: A light and electron microscopic study.J. Comp. Neurol. 21131–49.

    Google Scholar 

  • Przewlocki, R., Haarmann, I., Nikolarakis, K., Herz, A., and Hollt, V. (1988). Prodynorphin gene expression in spinal cord is enhanced after traumatic injury in the rat.Mol. Brain Res. 437–41.

    Google Scholar 

  • Ptashne, M. (1988). How eukaryotic transcriptional activators work.Nature 335683–689.

    Google Scholar 

  • Reppert, S. M., and Uhl, G. R. (1987). Vasopressin messenger ribonucleic acid in supraoptic and suprachiasmatic nuclei: Appearance and circadian regulation during development.Endocrinology 1202483–2487.

    Google Scholar 

  • Robinson, B. G., Frim, D. M., Schwartz, W. J., and Majzoub, J. A. (1988). Vasopressin mRNA in the suprachiasmatic nuclei: Daily regulation.Science 241(4863):342–344.

    Google Scholar 

  • Rodriguez, C., Brayton, K. A., Brownstein, M., and Dixon, J. E. (1989). Rat preprocarboxypeptidase H.J. Biol. Chem. 264(10):5988–5995.

    Google Scholar 

  • Rosenfeld, M. G., Mermod, J.-J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., Vale, W. W., and Evans, R. M. (1983). Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing.Nature 304129–135.

    Google Scholar 

  • Rothfeld, J. M., Hejtmancik, J. F., Conn, P. M., and Pfaff, D. W. (1987). LHRH messenger RNA in neurons in the intact and castrate male rat forebrain, studied by in situ hybridization.Exp. Brain Res. 67113–118.

    Google Scholar 

  • Ruda, M. A., Bennett, G. J., and Dubner, R. (1986). Neurochemistry and neural circuitry in the dorsal horn.Prog. Brain Res. 66219–268.

    Google Scholar 

  • Ruda, M. A., Iadarola, M. J., Choen, L. V., and Young, W. S., III (1988).In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia.Proc. Natl. Acad. Sci. USA 85622–626.

    Google Scholar 

  • Saffen, D. W., Cole, A. J., Worley, P. F., Christy, B. A., Ryder, K., and Baraban, J. M. (1988). Convulsant-induced increase in transcription factor messenger RNAs in rat brain.Proc. Natl. Acad. Sci. USA 851–5.

    Google Scholar 

  • Saito, K., Markowitz, S., and Moskowitz, M. A. (1989). Ergot alkaloids block neurogenic extravasation in dura mater: Proposed action in vascular headaches.Ann. Neurol. (in press).

  • Schalling, M., Dagerlind, A., Brene, S., Hallman, H., Djurfeldt, M., Persson, H., Terenius, L., Goldstein, M., Schlesinger, D., and Hökfelt, T. (1988a). Coexistence and gene expression of phenylethanolamine N-methyltransferase, tyrosine hydroxylase, and neuropeptide tyrosine in the rat and bovine adrenal gland: Effects of reserpine.Proc. Natl. Acad. Sci. 858306–8310.

    Google Scholar 

  • Schalling, M., Franco-Cereceda, A., Hökfelt, T., Persson, H., and Lundberg, J. M. (1988b). Increased neuropeptide Y messenger RNA and peptide in sympathetic ganglia after reserpine pretreatment.Eur. J. Pharmacol. 156419–420.

    Google Scholar 

  • Segerson, T. P., Kauer, J., Wolfe, H. C., Mobtaker, H., Wu, P., Jackson, I., and Lechan, R. M. (1987). Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus.Science 23878–80.

    Google Scholar 

  • Seidman, C. E., Wong, D. W., Jarcho, J. A., Bloch, K. D., and Seidman, J. G. (1988). Cis-acting sequences that modulate atrial natriuretic factor gene expression.Proc. Natl. Acad. Sci. USA 854104–4108.

    Google Scholar 

  • Selden, R. F., Skoskiewicz, M. J., Howie, K. B., Russell, P. S., and Goodman, H. M. (1986). Regulation of human insulin gene expression in transgenic mice.Nature 321525–528.

    Google Scholar 

  • Sherman, T. G., Day, R., Civelli, O., Douglass, J., Herbert, E., Akil, H., and Watson, S. J. (1988). Regulation of hypothalamic magnocellular neuropeptides and their mRNAs in the Brattleboro rat: Coordiante responses to further osmotic challenge.J. Neurosci. 83785–3796.

    Google Scholar 

  • Shivers, B. D., Harlan, R. E., Romano, G. J., Howells, R. D., and Pfaff, D. W. (1986). Cellular location and regulation of proenkephalin mRNA in rat brain. In In SituHybridization in Brain (G. R. Uhl, Ed.), Plenum Press, New York, pp. 3–20.

    Google Scholar 

  • Sivam, S. P., Takeuchi, K., Li, S., Douglass, J., Civelli, O., Calvetta, L., Herbert, E., McGinty, J. F., and Hong, J. S. (1988). Lithium increases dynorphin A(1-8) and prodynorphin mRNA levels in the basal ganglia of rats.Mol. Brain Res. 3155–164.

    Google Scholar 

  • Skofitsch, G., and Jacobowitz, D. M. (1985a). Calcitonin gene-related peptide: Detailed immunohistochemical distribution in the central nervous system.Peptides 6721–745.

    Google Scholar 

  • Skofitsch, G., and Jacobowitz, D. M. (1985b). Calcitonin gene-related peptide coexists with substance P in capsaicin sensitive neurons and sensory ganglia of the rat.Peptides 6747–754.

    Google Scholar 

  • Sossin, W. S., Fisher, J. M., and Scheller, R. H. (1989). Cellular and molecular biology of neuropeptide processing and packaging.Neuron 21407–1417.

    Google Scholar 

  • Stine, S. M., Yang, H.-Y., and Costa, E. (1982). Evidence for ascending and descending intraspinal as well as primary sensory somatostatin projections in the rat spinal cord.J. Neurochem. 381144–1150.

    Google Scholar 

  • Sugiura, Y., Lee, C. L., and Perl, E. R. (1986). Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin.Science 234358–361.

    Google Scholar 

  • Sumal, K. K., Pickel, V. M., Miller, R. J., and Reis, D. J. (1982). Enkephalin containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructure and synaptic interaction with primary sensory afferents.Brain Res. 248223–236.

    Google Scholar 

  • Sweetman, P. M., Wrathall, J. R., and Neale, J. H. (1986). Localization of dynorphin gene product-immunoreactivity in neurons from spinal cord and dorsal root ganglia.Neuroscience 18947–955.

    Google Scholar 

  • Tang, F., Costa, E., and Schwartz, J. P. (1983). Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks.Proc. Natl. Acad. Sci. 803841–3844.

    Google Scholar 

  • Tsukada, T., Fink, J. S., Mandel, G., and Goodman, R. H. (1987). Identification of a region in the human vasoactive intestinal polypeptide gene responsible for regulation of cyclic AMP.J. Biol. Chem. 262(18):8743–8747.

    Google Scholar 

  • Uhl, G. R. (ed.) (1986).In situ Hybridization in Brain, Plenum Press, New York.

    Google Scholar 

  • Uhl, G. R., and Reppert, S. M. (1986). Suprachiasmatic nucleus vasopressin messenger RNA: Circadian variaction in normal and Brattleboro rats.Science 232390–393.

    Google Scholar 

  • Uhl, G. R., Zing, H. H., and Habener, J. F. (1985). Vasopressin mRNA in situ hybridization: Localization and regulation studied with oligonucleotide cDNA probes in normal and Brattleboro rat hypothalamus.Proc. Natl. Acad. USA 825555–5559.

    Google Scholar 

  • Uhl, G. R., Goodman, R. R., Kuhar, M. J., Childers, S. R., and Snyder, S. H. (1979). Immunohistochemical mapping of enkephalin containing cell bodies, fibers and nerve terminals in the brain stem of the rat.Brain Res. 16675–94.

    Google Scholar 

  • Uhl, G. R., Evans, J., Parta, M., Walworth, C., Hill, K., Sasek, C., Voigt, M., and Reppert, S. (1986). Vasopressin and somatostatin mRNAin situ hybridization. In In SituHybridization in Brain (G. R. Uhl, Ed.), Plenum Press, New York, pp. 21–47.

    Google Scholar 

  • Uhl, G. R., Navia, B., and Douglas, J. (1988a). Differential expression of preproenkephalin and preprodynorphin mRNAs in striatal neurons: High levels of preproenkephalin expression depend on cerebral cortical afferents.J. Neurosci. 8(12):4755–4764.

    Google Scholar 

  • Uhl, G. R., Ryan, J. P., and Schwartz, J. F. (1988b). Morphine alters preproenkephalin gene expression.Brain Res. 459391–397.

    Google Scholar 

  • Vincent, S. R., Hokfelt, T., Christensson, I., and Terenius, L. (1982). Dynorphin-immunoreactive neurons in the central nervous system of the rat.Neurosci. Lett. 33185–190.

    Google Scholar 

  • Wall, P. D. (1978). The gate control theory of pain mechanisms. A re-examination and re-statement.Brain 1011–18.

    Google Scholar 

  • Wasylyk, B. (1988). Enhancers and transcription factors in the control of gene expression.Biochim. Biophys. Acta 95117–35.

    Google Scholar 

  • Watson, S. J., Khachaturian, H., Akil, H., Coy, D. H., and Goldstein, A. (1982). Comparison of the distribution of dynorphin systems and enkephalin systems in brain.Science 2181134–1136.

    Google Scholar 

  • Watson, S. J., Khachaturian, H., Taylor, L., Fischli, W., Goldstein, A., and Akil, H. (1983). Pro-dynorphin peptides are found in the same neurons throughout rat brain: Immunocytochemical study.Proc. Natl. Acad. Sci. USA 80891–894.

    Google Scholar 

  • Weber, E., and Barchas, J. D. (1983). Immunohistochemical distribution of dynorphin B in rat brain: Relation to dynorphin A and a-neo-endorphin-system.Proc. Natl. Acad. Sci. USA 801125–1129.

    Google Scholar 

  • Werner, H., Koch, Y., Baldino, F., Jr., and Gozes, I. (1988). Steroid regulation of somatostatin mRNA in the rat hypothalamus.J. Biol. Chem. 2637666–7671.

    Google Scholar 

  • Wiesenfeld-Hallin, Z., Hokfelt, T., Lundberg, J. M., Forssmann, W. G., Renecke, M., Tschopp, F. A., and Fischer, J. A. (1984). Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat.Neurosci. Lett. 52199–204.

    Google Scholar 

  • Williams, R. G., and Dockray, G. J. (1983). Distribution of enkephalin-related peptides in rat brain: Immunohistochemical studies using antisera to met-enkephalin and met-enkephalin Arg6 Phe7.Neuroscience 9563–586.

    Google Scholar 

  • Wolfson, B., Manning, R. W., Davis, L. G., Arentzen, R., and Baldino, F., Jr. (1984). Co-localization of corticotropin-releasing factor and vasopressin mRNA in neurones after adrenalectomy.Nature 31559–61.

    Google Scholar 

  • Woolf, C. J., and Wall, P. D. (1982). Chronic peripheral nerve section diminishes the primary afferent A-fibre mediated inhibition of rat dorsal horn neurones.Brain Res. 24277–85.

    Google Scholar 

  • Woolf, C. J., and Wall, P. D. (1986). Relative effectiveness of C-primary afferent fibers of different origins in evoking a prolonged facilitation of the flexor reflex in the rat.J. Neurosci. 61433–1442.

    Google Scholar 

  • Yen, T. J., Machlin, P. S., and Cleveland, D. W. (1988). Autoregulated instability of B-tubulin mRNAs by recognition of the nascent amino terminus of B-tubulin.Nature 334580–585.

    Google Scholar 

  • Yoshikawa, K., Hong, J.-S., and Sabol, S. L. (1985). Electroconvulsive shock increases preproenkephalin messenger RNAabundance in rat hypothalamus.Proc. Natl. Acad. Sci. 82589–593.

    Google Scholar 

  • Young, W. S., III, Bonner, T. I., and Brann, M. R. (1986a). Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain.Proc. Natl. Acad. Sci. USA 839827–9831.

    Google Scholar 

  • Young, W. S. III, Mezey, E., and Siegel, R. E. (1986b). Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats.Neurosci. Lett. 70198–203.

    Google Scholar 

  • Zingg, H. H., and Lefebvre, D. L. (1988). Oxytocin and vasopressin gene expression during gestation and lactation.Mol. Brain Res. 41–6.

    Google Scholar 

  • Zingg, H. H., Lefebvre, D. L., and Almazan, G. (1988). Regulation of poly(A) tail size of vasopressin mRNA.J. Biol. Chem. 263(23):11041–11043.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhl, G.R., Nishimori, T. Neuropeptide gene expression and neural activity: Assessing a working hypothesis in nucleus caudalis and dorsal horn neurons expressing preproenkephalin and preprodynorphin. Cell Mol Neurobiol 10, 73–98 (1990). https://doi.org/10.1007/BF00733637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00733637

Key words

Navigation