Skip to main content
Log in

Laboratory nondestructive evaluation technology for materials characterization

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper summarizes advances in ultrasonic and magnetic technologies for materials characterization that have recently occurred in the research laboratory and appear to have the potential to impact technology gaps of concern to the energy production industry. Included are discussions of the possibilities that one can characterize structure, such as grain size and dislocations, properties, such as fracture toughness, degradation mechanisms, such as creep, fatigue, and hydrogen attack, as well as the stresses which drive many of the degradation mechanisms. Throughout the discussions, careful attention is given to differentiating those quantities which are fundamentally related to the nondestructive evaluation response, and those which are related by empirical correlations. Included is a discussion of future work needed to further develop these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nondestructive Evaluation of Aging Infrastructure, SPIE Proceedings, Vols. 2454–2458 (SPIE, Bellingham, WA, 1995).

  2. Material Science and Engineering in the 1990's (National Academy Press, Washington. 1989).

  3. A. Vary, Material Property Characterization, inNondestructive Testing Handbook, Ultrasonic Testing, 2nd Ed., Vol. 7, A. S. Birks, R. E. Green, Jr., and P. McIntire, eds. (ASNT, Columbus, OH, 1991), Section 12, pp. 383–432.

    Google Scholar 

  4. R. B. Thompson, Theory and application of ultrasonic microstructural characterization,JOM 4:31–35 (1992).

    Google Scholar 

  5. R. B. Thompson and H. N. G. Wadley, The use of elastic wave material structure interaction theories in NDE modeling,Crit. Rev. Solid State Mater Sci. 16:37–89 (1989).

    Google Scholar 

  6. F. E. Stanke and G. S. Kino, A unified theory for elastic wave propagation in polycrystalline materials,J. Acoust. Soc. Am. 75:665–681 (1984).

    Google Scholar 

  7. F. E. Stanke, Inversion of attenuation measurements in terms of a parameterized autocorrelation function, inNDE of Microstructure for Process Control, H. N. G. Wadley, ed. (ASM, Metals Park, OH, 1985), pp. 55–60.

    Google Scholar 

  8. K. Goebbels, inResearch Techniques in Nondestructive Testing, Vol. IV, R. S. Sharpe, ed. (Academic Press, New York, 1980), p. 87.

    Google Scholar 

  9. R. B. Thompson, W. A. Spitzig, and T. A. Gray, Relative effects of porosity and grain size on ultrasonic wave propagation in iron compacts, inReview of Progress in Quantitative Nondestructive Evaluation, 5B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1986).

    Google Scholar 

  10. W. A. Spitzig, R. B. Thompson, and D. C. Jiles,Metall. Trans. 20A:571–578 (1989).

    Google Scholar 

  11. L. Adler, J. Rose, and C. Mobley,J. Appl. Phys. 59:539 (1986).

    Google Scholar 

  12. O. Buck, Materials characterization and flaw detection by acoustic NDE,JOM 4:17–23 (1992).

    Google Scholar 

  13. G. Gremaud and M. Bujard,J. Phys. 46:C10–315 (1985).

    Google Scholar 

  14. R. E. Green,J. Phys. 46:C10–827 (1985).

    Google Scholar 

  15. J. H. Cantrell and W. T. Yost, Acoustic harmonic generation from fatigue-induced dislocation dipoles,Phil. Mag. A 69:315–326 (1994).

    Google Scholar 

  16. S. Razvi, P. Li, K. Salama, J. H. Cantrell, Jr., and W. T. Yost, Nondestructive characterization of aluminum alloys, inReview of Progress in Quantitative Nondestructive Evaluation, 6, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1987), pp. 1403–1409.

    Google Scholar 

  17. A. Vary, Ref. 3, Table V, p. 391.

    Google Scholar 

  18. A. Vary, Concepts for interrelating ultrasonic attenuation, microstructure and fracture toughness in polycrystalline solids,Mater. Eval. 46:642–649 (1988).

    Google Scholar 

  19. G. Canella and M. Taddei, inNondestructive Characterization of Materials II, J. F. Bussiereet al., eds. (Plenum Press, New York, 1987), p. 261.

    Google Scholar 

  20. F. Nadeau, J. F. Bussiere, and G. Van Drunen,Met. Eval. 43:1 (1985).

    Google Scholar 

  21. A. N. Sinclair and H. Eng, inNondestructive Characterization of Materials II, J. F. Bussiereet al., eds. (Plenum Press, New York, 1987), p. 151.

    Google Scholar 

  22. A. N. Sinclair and T. Chan, inAdvances in Fracture Research V 5, K. Salamaet al., eds. (Pergamon Press, Oxford, 1989), p. 3145.

    Google Scholar 

  23. J. Mittleman, K. Y. Han, and R. B. Thompson, Ultrasonic evaluation of Ti-6-4 and nitrided Ti-6-4 materials, inReview of Progress in Quantitative Nondestructive Evaluation, 14B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1995), pp. 1457–1464.

    Google Scholar 

  24. L. Robert, A. LeBrun, and J. Attal, Assessment of irradiation damage of stainless steel by acoustic microscopy, inReview of Progress in Quantitative Nondestructive Evaluation, 14B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1995), pp. 1609–1616.

    Google Scholar 

  25. A. Le Brun and F. Billy, Nondestructive fatigue damage assessment using ultrasonic and magnetic measurements on metallic materials, inReview of Progress in Quantitative Nondestructive Evaluations, 13B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1994), pp. 1833–1840.

    Google Scholar 

  26. W. D. Wang, Inspection of refinery vessels for hydrogen attack using ultrasonic techniques, inReview of Progress in Quantitative Nondestructive Evaluation, 12B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1993), pp. 1645–1652.

    Google Scholar 

  27. R. B. Thompson, W.-Y. Lu, and A. V. Clark, Jr., Ultrasonic measurements, inHandbook of Measurement of Residual Stress, J. Lu, ed. (Fairmont Press, 1996), pp. 149–178.

  28. R. B. King and C. M. Fortunko, Determination of in-plane residual stress states in plates using horizontally polarized shear waves,J. Appl. Phys. 54, 1339–1354 (1983).

    Google Scholar 

  29. R. B. Thompson, S. S. Lee, and J. F. Smith, Angular dependence of ultrasonic wave propagation in a stressed, orthorhombic continuum: Theory and application to the measurement of stress and texture,J. Acoust. Soc. Am. 80:921–931 (1986).

    Google Scholar 

  30. C.-S. Man and W. Y. Lu, Towards an acoustoelastic theory for measurement of residual stress,J. Elasticity 17:159–182 (1987).

    Google Scholar 

  31. A. V. Clark, J. C. Moulder, R. E. Trevisan, T. A. Siewart, and R. B. Mignona, Ultrasonic techniques for residual stress measurement in thin welded aluminum alloy plates, inReview of Progress in Quantitative Nondestructive Evaluation, 5B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1986), pp. 1461–1472.

    Google Scholar 

  32. D. C. Jiles, M. R. Govindaraju, S. B. Biner, and M. Devine (unpublished results). For related material, please see M. K. Devine and D. C. Jiles, Effects of high temperature creep on magnetic properties of steels,IEEE Trans. Magn. 28:2465 (1992).

    Google Scholar 

  33. Z. J. Chen, A. Mitra, S. B. Biner, D. C. Jiles, and M. J. Sablik, Detection of creep in Cr-Mo steel by magnetic hysteresis measurements, inReview of Progress in Quantitative Nondestructive Evaluation, 14B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1995), pp. 1701–1707.

    Google Scholar 

  34. A. Mitra, Z. J. Chen, and D. C. Jiles, Magnetic property evaluation of creep damaged Cr-Mo steel components used in power plants, ibid.in, pp. 1733–1790.

    Google Scholar 

  35. J. Kameda and R. Ranjan, Nondestructive evaluation of steels using acoustic and magnetic Barkhausen signals-II. Effect of intergranular impurity segregation,Acta. Metall. 35:1527–1531 (1987).

    Google Scholar 

  36. J. Kameda, Characterization of tempered martensite microstructure and embrittlement by acoustic and magnetic Barkhausen signal measurement,Scripta Metall 22:1487–1492 (1988).

    Google Scholar 

  37. E. A. Birt, W. T. Yost, R. DeNale, and J. L. Grainger, Parameterization of asymmetry in magnetoacoustic emission by numerical process, inReview of Progress in Quantitative Nondestructive Evaluation, 11B, D. O. Thompson and D. E. Chimenti. eds. (Plenum Press, New York, 1992), pp. 1783–1790.

    Google Scholar 

  38. M. J. Sablik, H. Kwun, G. L. Burkhardt, and D. G. Cardena, Preliminary studies of magnetic NDE techniques for identifying neutron embrittlement of pressure vessel steel, inReview of Progress in Quantitative NDE, 12, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1993), pp. 1823–1830.

    Google Scholar 

  39. L. B. Sipahi, M. R. Govindaraju, D. C. Jiles, P. K. Liaw, and D. S. Drinon, Magnetic Barkhausen effect studies in the evaluation of neutron irradiation degradation in nuclear pressure vessel steels, inReview of Progress in Quantitative Nondestructive Evaluation, 13, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1994), pp. 1801–1808.

    Google Scholar 

  40. M. R. Govindaraju, A. Strom, D. C. Jiles, and S. B. Biner, Evaluation of low-cycle fatigue damage in steel structural components by a magnetic measurement technique, inReview of Progress in Quantitative Nondestructive Evaluation, 12, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1993), pp. 1839–1846.

    Google Scholar 

  41. M. Guyon and M. Mayos, Nondestructive evaluation of fatigue damage on steels using magnetic techniques, inReview of Progress in Quantitative Nondestructive Evaluation, 14B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1995), pp. 1701–1707.

    Google Scholar 

  42. M. K. Devine, A. Strom, D. C. Jiles, and D. Utrata, Evaluation of steel bridges by magnetic hysteresis measurements, inReview of Progress in Quantitative Nondestructive Evaluation, 13, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1995), pp. 1717–1724.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, R.B. Laboratory nondestructive evaluation technology for materials characterization. J Nondestruct Eval 15, 163–176 (1996). https://doi.org/10.1007/BF00732043

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732043

Key words

Navigation