Skip to main content
Log in

Blood group type glycosphingolipids of human kidneys. Structural characterization of extended globo-series compounds

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Blood group type glycosphingolipids present in kidneys of blood group A and B human individuals have been isolated and structurally characterized by mass spectrometry, proton NMR spectroscopy, degradation studies and by their reactivity with various monoclonal antibodies andEscherichia coli bacteria. The two major complex glycolipids present in the blood group A and B kidneys were globopentaosylceramide (IV3Galβ-Gb4Cer) and the X pentaglycosylceramide (III3Fucα-nLc4Cer). The major blood group A glycolipid in the blood group A kidneys was based on the type 4 chain (globo-series). There were also small amounts of the type 2 chain and trace amounts of the type 1 and type 3 chain based A glycolipids. In addition, the blood group H type 4 chain structure was present together with Lea and Leb compounds. In the blood group B kidneys, the major B glycolipids were monofucosylated hexa- and octaglycosylceramides, where the former were based on the type 2 carbohydrate chain. The blood group B type 4 chain heptaglycosylceramide was found to be a minor component making up only about 1% of the total blood group B structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makita A (1964)J Biochem (Tokyo) 55:269–76.

    Google Scholar 

  2. Mårtensson E (1966)Biochim Biophys Acta 116:296–308.

    Google Scholar 

  3. Mårtensson E (1969) InProgress in the Chemistry of Fats and Other Lipids (Holman RT, ed.) Vol X, part 4, pp 367–407. Oxford: Pergamon Press.

    Google Scholar 

  4. Rauvala H (1976)FEBS Lett 62:161–4.

    Google Scholar 

  5. Rauvala H (1976)J Biol Chem 251:7517–20.

    Google Scholar 

  6. Breimer ME, Samuelsson BE (1986)Transplant 42:88–91.

    Google Scholar 

  7. Rydberg L, Breimer ME, Samuelsson BE, Brynger H (1987)Transplant Proc 19:4528–37.

    Google Scholar 

  8. Breimer ME, Jovall PÅ (1985)FEBS Lett 179:165–72.

    Google Scholar 

  9. Breimer ME (1985)Glycoconjugate J 2:375–85.

    Google Scholar 

  10. Karlsson K-A (1987)Methods Enzymol 138:212–20.

    Google Scholar 

  11. Breimer M, Hansson GC, Karlsson K-A, Leffler H (1982)J Biol Chem 257:906–16.

    Google Scholar 

  12. Breimer ME, Hansson GC, Larson G (1983) InProc 7th Int Symp Glycoconjugates (Chester MA, Heinegård D, Lundblad A, Svensson S, eds) pp 421–2. Lund, Sweden: Secretariat.

    Google Scholar 

  13. Magnani JC, Smith DF, Ginsburg V (1981)Anal Biochem 109:399–402.

    Google Scholar 

  14. Hansson GC, Karlsson K-A, Larson G, McKibbin JM, Blaszczyk M, Herlyn M, Steplewski Z, Koprowski H (1983)J Biol Chem 258:4091–7.

    Google Scholar 

  15. Falk K-E, Karlsson K-A, Samuelsson BE (1979)Arch Biochem Biophys 192:191–202.

    Google Scholar 

  16. Ciucanu I, Kerek F (1984)Carbohydr Res 131:209–17.

    Google Scholar 

  17. Larson G, Karlsson H, Hansson GC, Pimlott W (1987)Carbohydr Res 161:281–90.

    Google Scholar 

  18. Karlsson K-A (1974)Biochemistry 13:3643–7.

    Google Scholar 

  19. Breimer ME, Hansson GC, Karlsson K-A, Leffler H, Pimlott W, Samuelsson BE (1979)Biomed Mass Spectrom 6:231–41.

    Google Scholar 

  20. Breimer ME, Hansson GC, Karlsson K-A, Larson G, Leffler H, Pascher I, Pimlott W, Samuelsson BE (1980)Adv Mass Spectrom 8:1097–108.

    Google Scholar 

  21. Stellner K, Saito H, Hakomori S (1973)Arch Biochem Biophys 155:464–72.

    Google Scholar 

  22. Breimer ME, Karlsson K-A, Samuelsson BE (1981)J Biol Chem 256:3810–6.

    Google Scholar 

  23. Le Pendu J, Lambert F, Samuelsson BE, Breimer ME, Seitz RC, Urdanitz MP, Suesa N, Murray R, Francois A, Poschmann A, Viñas J, Oriol R (1986)Glycoconjugate J 3:255–71.

    Google Scholar 

  24. Abe K, Levery SB, Hakomori S (1984)J Immunol 132:1951–4.

    Google Scholar 

  25. Bock K, Breimer ME, Brignole A, Hansson GC, Karlsson K-A, Larson G, Leffler H, Samuelsson BE, Strömberg N, Svanborg Edén C, Thurin J (1985)J Biol Chem 260:8545–51.

    Google Scholar 

  26. Rydberg L, Breimer ME, Samuelsson BE (1988)Transfusion 28:483–8.

    Google Scholar 

  27. Dabrowski J, Hanfland P, Egge H, Dabrowski U (1981)Arch Biochem Biophys 210:405–11.

    Google Scholar 

  28. Kannagi R, Levery SB, Ishigami F, Hakomori S, Shevinsky LH, Knowles BB, Soler D (1983)J Biol Chem 258:8934–42.

    Google Scholar 

  29. Dabrowski J, Hanfland P, Egge H (1980)Biochemistry 19:5652–8.

    Google Scholar 

  30. Karlsson K-A, Larson G (1981)J Biol Chem 256:3512–24.

    Google Scholar 

  31. Breimer ME, Karlsson K-A, Samuelsson BE (1982)J Biol Chem 257:1079–85.

    Google Scholar 

  32. Kannagi R, Levery S, Hakomori S (1984)FEBS Lett 175:397–401.

    Google Scholar 

  33. Karlsson K-A (1977)Progr Chem Fats Lipids 16:207–30.

    Google Scholar 

  34. Breimer ME, Karlsson H, Karlsson K-A, Nilsson K, Samuelsson BE, Strömberg N (1988)Carbohydr Res 178:111–20.

    Google Scholar 

  35. Levery SB, Nudelman ED, Andersen NH, Hakomori S (1986)Carbohydr Res 151:311–28.

    Google Scholar 

  36. Clausen H, Watanabe K, Kannagi R, Levery SB, Nudelman E, Arao-Tomono Y, Hakomori S (1984)Biochem Biophys Res Commun 124:523–9.

    Google Scholar 

  37. Clausen H, Levery SB, Nudelman E, Tsuchiya S, Hakomori S (1985)Proc Natl Acad Sci USA 82:1199–203.

    Google Scholar 

  38. Clausen H, Levery SB, Nudelman E, Baldwin M, Hakomori S (1986)Biochemistry 25:7075–85.

    Google Scholar 

  39. Rydberg L, Breimer ME, Brynger H, Samuelsson BE (1990)Transplant 49:954–60.

    Google Scholar 

  40. Hakomori S, Wang S-M, Young WW (1977)Proc Natl Acad Sci USA 74:3023–7.

    Google Scholar 

  41. Hakomori S, Young WW (1983) InSphingolipid Biochemistry (Kanfer JN, Hakomori S, eds) pp 381–436. New York: Plenum.

    Google Scholar 

  42. Schwarting GA, Carroll PG, DeWolf WC (1983)Biochem Biophys Res Commun 112:935–40.

    Google Scholar 

  43. Nagai K, Roberts DD, Toida T, Matsumoto H, Kushi Y, Handa S, Ishizuka I (1989)J Biol Chem 264:16229–37.

    Google Scholar 

  44. Leffler H, Svanborg-Edén C (1980)FEMS Microbiol Lett 8:127–34.

    Google Scholar 

  45. Källenius G, Möllby R, Svensson SB, Winberg J, Lundblad A, Svensson S, Cedergren B (1980)FEMS Microbiol Lett 7:297–302.

    Google Scholar 

  46. Senior D, Baker N, Cedergren B, Falk P, Larson G, Lindstedt R, Svanborg-Edén C (1988)FEBS Lett 237:123–7.

    Google Scholar 

  47. Lindstedt R, Baker N, Falk P, Hull R, Hull S, Karr J, Leffler H, Svanborg-Edén C, Larson G (1989)Infect Immunity 57:3389–94.

    Google Scholar 

  48. Breimer ME, Hansson G, Leffler H (1985)J Biochem (Tokyo) 98:1169–80.

    Google Scholar 

  49. Clausen H, Hakomori S (1989)Vox Sang 56:1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations: for blood group glycolipid antigens the short hand designation stands for blood group—number of sugar residues—type of carbohydrate chain. Thus A-7-4 means a type 4 chain blood group A heptaglycosylceramide. The sugar types are abbreviated for mass spectrometry to Hex for hexose, HexNAc forN-acetylhexosamine and dHex for deoxyhexose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holgersson, J., Jovall, PÅ., Samuelsson, B.E. et al. Blood group type glycosphingolipids of human kidneys. Structural characterization of extended globo-series compounds. Glycoconjugate J 8, 424–433 (1991). https://doi.org/10.1007/BF00731294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731294

Keywords

Navigation