Skip to main content
Log in

Immunohistological analyses of neutral glycosphingolipids and gangliosides in normal mouse skeletal muscle and in mice with neuromuscular diseases

  • Glycoconjugate Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The expression of neutral glycosphingolipids (GSLs) and gangliosides was investigated in cryosections of normal mouse skeletal muscle and in muscle of mice with neuromuscular diseases using indirect immunofluorescence microscopy. Transversal and longitudinal sections were immunostained with specific polyclonal antibodies against lactosylceramide, lacto-N-neotetraosylceramide, globoside, GM3(Neu5Ac), GM3(Neu5Gc) and GM1(Neu5Ac) as well as monoclonal anti-Forssman GSL antibody. In normal CBA/J mouse muscle (control) the main immunohistochemically detected ganglioside was GM3(Neu5Ac) followed by moderately expressed GM3(Neu5Gc) and GM1. The neutral GSLs lactosylceramide and globoside were stained with almost identical, high fluorescence intensity. Low amounts of lacto-N-neotetraosylceramide and trace quantities of Forssman GSL were immunostained. All GSLs were detected in the sarcolemma, but also in considerable amounts at the intracellular level. Mice with neuromuscular diseases were the A2G-adr mouse mutant (a model for human recessive myotonia of Becker type), the BL6-wr mutant (a model for motor neuron disease) and the BL10-mdx mouse mutant (a model for human Duchenne muscular dystrophy). No changes in GSL expression were found in the A2G-adr mouse, while muscle of the BL6-wr mouse showed increased intensity of immunofluorescence in stainings with anti-lactosylceramide and anti-GM3(Neu5Ac) antibodies. Muscle of BL10-mdx mice showed the most prominent changes in GSL expression with reduced fluorescence intensity for all antibodies. Major differences were not observed in the intensities of GSLs, but there were significant differences in the patterns of distribution on plasma membrane and at the subcellular level. The exact nature and pathogenesis of these changes should be elucidated since such investigations could furnish advances in understanding the functional role of neutral GSLs and gangliosides in normal as well as in diseased muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gahmberg C, Hakomori S (1973)J Biol Chem 245: 4311–17.

    Google Scholar 

  2. Gillard BK, Thurmon LT, Marcus DM (1993)Glycobiology 3: 57–67.

    Google Scholar 

  3. Katz HR, Austen KF (1986)J Immunol 136: 3819–24.

    Google Scholar 

  4. Marcus DM, Janis R (1970)J Immunol 104: 1530–39.

    Google Scholar 

  5. Symington FW (1989)J Immunol 142: 2784–90.

    Google Scholar 

  6. Hakomori S (1981)Ann Rev Biochem 50: 733–64.

    Google Scholar 

  7. Hakomori S (1990)J Biol Chem 265: 18713–16.

    Google Scholar 

  8. Igarashi Y, Nojiri H, Hanai N, Hakomori S (1989)Methods Enzymol 179: 521–41.

    Google Scholar 

  9. Stults CLM, Sweeley CC, Macher BA (1989)Methods Enzymol 179: 167–214.

    Google Scholar 

  10. Zeller CB, Marchase RB (1992)Am J Physiol 262 (Cell Physiol 31): C1341–55.

    Google Scholar 

  11. Chan K-FJ (1989)J Biol Chem 264: 18632–37.

    Google Scholar 

  12. Chan K-FJ, Liu Y (1991)Glycobiology 1: 193–203.

    Google Scholar 

  13. McEvoy FA, Ellis DE (1977)Biochem Soc Trans 5: 1719–21.

    Google Scholar 

  14. Obata K, Oide M, Handa S (1977)Nature 266: 369–71.

    Google Scholar 

  15. Max SR, Nelson PG, Brady RO (1970)J Neurochem 17: 1517–20.

    Google Scholar 

  16. Caccia MR, Meola G, Cerri C, Frattola L, Scarlato G, Aporti F (1979)Muscle Nerve 2: 382–89.

    Google Scholar 

  17. Mengs U, Goldschmidt R, Tüllner H-U (1986)Arch Int Pharmacodyn 283: 229–36.

    Google Scholar 

  18. Sebille A (1984)Muscle Nerve 7: 278–80.

    Google Scholar 

  19. Nordio F, Canella R, Gorio A (1982)Muscle Nerve 5: 107–10.

    Google Scholar 

  20. Bassi S, Albizzai MG, Calloni E, Frattola L (1982)Muscle Nerve 5: 351–6.

    Google Scholar 

  21. Bradley WG, Hedlund W, Cooper C, Desousa GJ, Gabbai A, Mora JS, Munsat TL, Scheife R (1984)Neurology 34: 1079–82.

    Google Scholar 

  22. Hallet M, Flood T, Slater N, Dambrosia J (1987)Muscle Nerve 10: 822–25.

    Google Scholar 

  23. Horowitz SH (1986)Muscle Nerve 9: 531–36.

    Google Scholar 

  24. Lange DJ, Good PF, Bradley WG (1983)J Neurol Sci 61: 211–16.

    Google Scholar 

  25. Čačić M, Müthing J, Kračun I, Neumann U, Weber-Schürholz S (1994)Glycoconjugate J 11: 477–85.

    Google Scholar 

  26. Jockusch H, Kaupmann K, Gronemeier M, Schleef M, Klocke R (1994)Progr Neurobiol 42: 313–17.

    Google Scholar 

  27. Mehrke G, Brinkmeier H, Jockusch H (1988)Muscle Nerve 11: 440–46.

    Google Scholar 

  28. Reininghaus J, Füchtbauer E-M, Bertram K, Jockusch H (1988)Muscle Nerve 11: 433–39.

    Google Scholar 

  29. Andrews JM (1975)J Neuropathol Exp Neurol 34: 12–27.

    Google Scholar 

  30. Duchen LW, Strich SJ (1968)J Neurol Neurosurg Psychiat 31: 535–42.

    Google Scholar 

  31. Bulfield G, Siller WG, Wight PAL, Moore KJ (1984)Proc Natl Acad Sci USA 81: 1189–92.

    Google Scholar 

  32. Hoffman EP, Brown RH Jr, Kunkel LM (1987)Cell 51: 919–28.

    Google Scholar 

  33. Šoštarić K, Čačić M, Weber-Schürholz S, Müthing J (1993)Biol Chem Hoppe-Seyler 374: 959.

    Google Scholar 

  34. Watts RL, Watkins J, Watts DC (1978) InThe Biochemistry of Myasthenia Gravis and Muscular Dystrophy (Lunt GG, Marchbanks RM, eds) pp. 331–4. London: Academic Press.

    Google Scholar 

  35. Kasai M, Iwamori M, Nagai Y, Okumura K, Tada T (1980)Eur J Immunol 10: 175–80.

    Google Scholar 

  36. Müthing J, Neumann U (1993)Biomed Chromatogr 7: 158–61.

    Google Scholar 

  37. Müthing J, Maurer U, Šoštarić K, Neumann U, Brandt H, Duvar S, Peter-Katalinić J, Weber-Schürholz S (1994)J Biochem 115: 248–56.

    Google Scholar 

  38. Müthing J, Steuer H, Peter-Katalinić J, Marx U, Bethke U, Neumann U, Lehmann J (1994)J Biochem 116: 64–73.

    Google Scholar 

  39. Müthing J, Pörtner A, Jäger V (1992)Glycoconjugate J 9: 265–73.

    Google Scholar 

  40. Bethke U, Kniep B, Mühlradt PF (1987)J Immunol 138: 4329–35.

    Google Scholar 

  41. Suzuki A, Yamakawa T (1981)J Biochem 90: 1541–44.

    Google Scholar 

  42. Nakamura K, Ariga T, Yahagi T, Miyatake T, Suzuki A, Yamakawa T (1983)J Biochem 94: 1359–65.

    Google Scholar 

  43. Költgen D, Brinkmeier H, Jockusch H (1991)Muscle Nerve 14: 775–80.

    Google Scholar 

  44. Steinmeyer K, Klocke R, Ortland C, Gronemeier M, Jockusch H, Gründer S, Jentsch TJ (1991)Nature 354: 304–8.

    Google Scholar 

  45. Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, Zoll B, Lehmann-Horn F, Grzeschik K-H, Jentsch TJ (1992)Science 257: 797–800.

    Google Scholar 

  46. Steinmeyer K, Lorenz C, Pusch M, Koch MC, Jentsch TJ (1994)EMBO J 13: 737–43.

    Google Scholar 

  47. Kaupmann K, Simon-Chazottes D, Guenet JL, Jockusch H (1992)Genomics 13: 39–43.

    Google Scholar 

  48. Melki J, Abdelhak S, Sheth P, Bachelot MF, Burlet P, Marcadet A, Aicardi J, Barois A, Carriere JP, Fardeau M, Fontan D, Ponsot G, Billette T, Angelini C, Barbosa C, Ferriere G, Lanzi G, Ottolini A, Babron MC, Cohen D, Hanauer A, Clerget-Darpoux F, Lathrop M, Munnich A, Frezal J (1990)Nature 344: 767–68.

    Google Scholar 

  49. Iannello RC, Jeffrey PL (1992)Glycobiology 2: 211–16.

    Google Scholar 

  50. Bonilla E, Samitt CE, Miranda AF, Hays AP, Salviati G, DiMauro S, Kunkel LM, Hoffman EP, Rowland LP (1988)Cell 54: 447–52.

    Google Scholar 

  51. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989)Science 244: 1578–80.

    Google Scholar 

  52. Ohlendiek K, Campbell KP (1991)J Cell Biol 11: 1685–94.

    Google Scholar 

  53. Reuter G, Schauer R (1988)Glycoconjugate J 5: 133–35.

    Google Scholar 

  54. IUPAC-IUB Commission on Biochemical Nomenclature (1977)Eur J Biochem 79: 11–21.

    Google Scholar 

  55. Svennerholm L (1963)J Neurochem 10: 613–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations: BSA, bovine serum albumin; DAPI, 4′, 6-diamidine-2-phenylindole-dihydrochloride; DTAF, dichlorotriazinylamino-fluorescein; GSL(s), glycosphingolipid(s); Neu5Ac,N-acetylneuraminic acid; Neu5Gc,N-glycolylneuraminic acid [53]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [54] and the nomenclature of Svennerholm [55]. Lactosylceramide or LacCer, Galβ1-4Glcβ1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAcβ1-4Galβ1-4Glcβ1-1Cer; globotriaosylceramide or GbOse3Cer, Galα1-4Galβ1-4Glcβ1-1Cer; gangliotetraosylceramide or GgOse3Cer, Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer; globotetraosylceramide or GbOse4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1Cer; Forssman GSL or GbOse5Cer, GalNAcα1-3GalNAcβ1-3GAlα1-4Galβ1-4Glcβ1-1Cer; GM3, II3Neu5Ac-LacCer; GM1, II3Neu5Ac-GgOse4Cer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čačić, M., Šoštarić, K., Weber-Schürholz, S. et al. Immunohistological analyses of neutral glycosphingolipids and gangliosides in normal mouse skeletal muscle and in mice with neuromuscular diseases. Glycoconjugate J 12, 721–728 (1995). https://doi.org/10.1007/BF00731270

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731270

Keywords

Navigation