Skip to main content
Log in

Pauli-Dirac matrix generators of Clifford Algebras

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This article presents a Pauli-Dirac matrix approach to Clifford Algebras. It is shown that the algebra C2 is generated by two Pauli matrices iσ2 and iσ3; C3 is generated by the three Pauli matrices σ1, σ2, σ3; C4 is generated by four Dirac matrices γ0, γ1, γ2, γ3 and C5 is generated by five Dirac matrices iγ0, iγ1, iγ2, iγ3, iγ5. The higher dimensional anticommuting matrices which generate arbitrarily high order Clifford algebras are given in closed form. The results obtained with this Clifford algebra approach are compared with the vector product method which was described in a recent article [Found. Phys. 10, 531–553 (1980) by Poole, Farach and Aharonov] and with the Dirac, Rashevskii and Ramakrishnan methods of matrix generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Aharonov, H. A. Farach, and C. P. Poole, Jr.,Amer. J. Phys. 45, 451 (1977); referred to as I.

    Google Scholar 

  2. H. A. Farach, Y. Aharonov, and C. P. Poole, Jr.,Amer. J. Phys. 47, 247 (1979); referred to as II.

    Google Scholar 

  3. C. P. Poole, Jr., H. A. Farach, and Y. Aharonov,Found. Phys. 10, 718 (1980); referred to as III.

    Google Scholar 

  4. W. K. Clifford,Amer. J. Math. 1, 350 (1878).

    Google Scholar 

  5. B. L. van der Waerden,Algebra (Springer Verlag, Berlin, 1967).

    Google Scholar 

  6. S. Lang,Algebra (Addison Wesley, Reading, Mass. 1965).

    Google Scholar 

  7. R. Porteous,Topological Geometry (Van Nostrand Reinhold, Co., New York, 1969).

    Google Scholar 

  8. M. Riesz,Comptes Rendus du Dixième Congrès des Math. Scan. (Copenhagen, 1946), p. 123ff.

  9. M. Riesz,Comptes Rendus du Douzième Congrès des Math. Scan (Lund, 1953), p. 241ff.

  10. M. Riesz,Clifford Numbers and Spinors Chap. I–IV, Lecture Series No. 38 (University of Maryland, 1958).

  11. E. M. Corson,Introduction to Tensors, Spinors and Relativistic Wave Equations (Blackie and Son, London 1953).

    Google Scholar 

  12. P. K. Rashevskii,Amer. Math. Soc. Transl. 6, 1 (1957).

    Google Scholar 

  13. S. Teitler,Suppl. Nuovo Cimento 3, 1, 15 (1965).

    Google Scholar 

  14. S. Teitler,J. Math. Phys. 6, 1976 (1965);7, 1730, 1739 (1966).

    Google Scholar 

  15. A. Ramarishnan,L-Matrix Theory and the Grammar of Dirac Matrices (Tata-McGraw Hill, Bombay, 1972).

    Google Scholar 

  16. D. Hestenes,Am. J. Phys. 47, 399 (1979).

    Google Scholar 

  17. D. Hestenes,J. Math. Phys. Appl. 24, 313 (1968).

    Google Scholar 

  18. D. Hestenes and G. Sobczyk,Clifford Algebras and Geometric Calculus: A Unified Language for Mathematics and Physics, Mathematics Lecture Note Series (Addison Wesley, Reading, Mass. 1980).

    Google Scholar 

  19. N. Salingaros,J. Math. Phys. 22, 226 (1981).

    Google Scholar 

  20. N. Salingaros and M. Dresden,Phys. Rev. Lett. 43, 1 (1979).

    Google Scholar 

  21. R. H. Good, Jr.,Rev. Mod. Phys. 27, 187 (1955).

    Google Scholar 

  22. D. Hestenes,Space Time Algebra (Gordon & Breach, New York 1966).

    Google Scholar 

  23. G. Dixon,J. Math. Phys. 18, 2204 (1977).

    Google Scholar 

  24. K. Konco, M. Kawaguchi, and K. Kondo,Raag Memoirs of the Unifying Study of Basid Problems in Engineering and Physical Science by Means of Geometry, IV (1968).

  25. J. Palmer,J. Math. Anal. and Appl. 64, 189 (1978).

    Google Scholar 

  26. A. B. Pestov,Probl. Teor. II Gravitas. II and Elem. Chastits 5, 54 (1974).

    Google Scholar 

  27. J. Jayaraman,J. Phys. A 9, 1131 (1976).

    Google Scholar 

  28. P. A. Collins and R. W. Tucker,Nucl. Phys. B121, 307 (1977).

    Google Scholar 

  29. K. Greider,Phys. Rev. Lett. 44, 1718 (1980).

    Google Scholar 

  30. N. Ionescu-Pallas, “Abstracts of the Conference on Magnetic Resonance and Telated Phenomena,”Inst. Atom. Phys. (1971).

  31. D. Hestenes,J. Math. Phys. 8, 798 (1967).

    Google Scholar 

  32. D. Hestenes and R. Gurtler,Amer. J. Phys. 39, 1028 (1971).

    Google Scholar 

  33. A. Ercoli-Finzi and C. Morosi,Atti. Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. and Nat. 59, 421 (1975).

    Google Scholar 

  34. A. E. Finzi and C. Morosi,Atti. Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. and Nat. 59 (1975).

  35. M. Novello,J. Math. Phys. 12, 1039 (1971).

    Google Scholar 

  36. J. A. Brooke,J. Math. Phys. 19, 952 (1978).

    Google Scholar 

  37. J. A. Brooke,J. Math. Phys. 21, 617 (1980).

    Google Scholar 

  38. A. Crumeyrolle,Ann. Inst. H. Poincaré A 11, 19 (1969).

    Google Scholar 

  39. F. A. Doria,Lett. Nuovo Cimento 8, 994 (1973).

    Google Scholar 

  40. F. A. M. Frescura and B. J. Hiley,Found. Phys. 10, 7 (1980).

    Google Scholar 

  41. W. Graf,Ann. Inst. H. Poincaré Sect. A 29, 85 (1978).

    Google Scholar 

  42. D. Hestenes,Amer. J. Phys. 39, 1013 (1971).

    Google Scholar 

  43. R. Kerner,J. Math. Phys. 21, 2553 (1980).

    Google Scholar 

  44. V. E. Stepanov,Vestn. Leningr. Univ. Fiz. and Khim 1, 104 (1979).

    Google Scholar 

  45. M. Sirugue-Collin and M. Sirugue,Commun. Math. Phys. 48, 131 (1976).

    Google Scholar 

  46. J. O. Winnberg,J. Math. Phys. 18, 625 (1977).

    Google Scholar 

  47. K. Bugajska,Int. J. Theor. Phys. 18, 95 (1979).

    Google Scholar 

  48. P. Lounesto,Celestial Mech. 17 207 (1978).

    Google Scholar 

  49. P. Lounesto, Spinors and Brauer-Wall Groups Report HTKK-MAT-A124 Helsinki, University of Technology (1978).

  50. G. Sobczyk,Acta Phys. Pol. B11, 579 (1980).

    Google Scholar 

  51. D. Dominici and G. Longhi,Nuovo Cimento A 46A, Ser. 2, 213 (1978).

    Google Scholar 

  52. A. P. Hristev,J. Math. Phys. New York 12, 118 (1971).

    Google Scholar 

  53. J. D. Edmonds,Lett. Nuovo Cimento 17, Ser. 2, 465 (1976).

    Google Scholar 

  54. A. Ramakrishnan, Madras, India, New York, Plenum, Jan. (1969).

  55. L. P. Horwitz and L. C. Biedenharn,J. Math. Phys. 20, 269 (1979).

    Google Scholar 

  56. S. A. Basri and L. P. Horwitz,Phys. Rev. D 11, 572 (1975).

    Google Scholar 

  57. T. S. Santhanam,J. Math. Phys. 11, 1122 (1970).

    Google Scholar 

  58. A. Ramakrishnan,The Weak Interaction Hamiltonian in L Matrix Theory (Seminar at Rand Corp., July 1970).

  59. E. V. Pavlov,Iz. Vuz Mat. 22, 64 (1978).

    Google Scholar 

  60. J. D. Edmonds, Jr.,Int. J. Theor. Phys. 15, 911 (1976).

    Google Scholar 

  61. J. P. Fillmore,Int. J. Theor. Phys. 16, 937 (1977).

    Google Scholar 

  62. R. W. Hayward,The Dynnamics of Fields of Higher Spin (NBS Report Mono-154, Aug. 1976).

  63. G. G. Markov and A. P. Norden,Izv. Vuz Mat. 19, 82 (1975).

    Google Scholar 

  64. T. S. Santhanam, P. S. Chandrasekaran, and N. B. Menon,J. Math. Phys. 12, 377 (1971).

    Google Scholar 

  65. F. A. Berezin,The Method of Second Quantization Frame, N. Mugibayashi (Academic Press, New York 1966).

    Google Scholar 

  66. R. Delanghe,Meded. Kon. Vlaamse Acad. Wet. 32, 3 (1970).

    Google Scholar 

  67. R. Delanghe and F. Brackx,J. Funct. Anal. 37, 164 (1980).

    Google Scholar 

  68. G. Dixon,J. Math. Phys. 19, 2103 (1978).

    Google Scholar 

  69. D. Hestenes,Math. Anal. and Appl. 24, 467 (1968).

    Google Scholar 

  70. D. Hestenes,J. Math. Phys. 15, 1768 (1974).

    Google Scholar 

  71. M. Kenmoku and S. Naka,Prog. Theor. Phys. 59, 1397 (1978).

    Google Scholar 

  72. C. N. Ktorides,J. Math. Phys. 16, 2123 (1975).

    Google Scholar 

  73. J. T. Lewis and P. N. M. Sisson,Commun. Math. Phys. 44, 279 (1975).

    Google Scholar 

  74. J. Manuceau and A. Verbeure,Commun. Math. Phys. 18, 319 (1970).

    Google Scholar 

  75. M. Günaydin,Nuovo Cimento A 29, Ser. 2, 467 (1975).

    Google Scholar 

  76. F. N. Ndili and G. C. Chukwumah,Int. J. Theor. Phys. 11, 261 (1974).

    Google Scholar 

  77. R. Penney,Nuovo Cimento B 3B, Ser. 2, 95 (1971).

    Google Scholar 

  78. H. D. Doebner and T. D. Palev,C. R. Acad. Bulg. Sci. 26, 151 (1973).

    Google Scholar 

  79. A. Van Dael,Commun. Math. Phys. 21, 171 (1971).

    Google Scholar 

  80. H. Tilgner,Ann. Inst. H. Poincaré 14, 179 (1971).

    Google Scholar 

  81. U. E. Schroder,Acta Phys. Austriaca 33, 328 (1971).

    Google Scholar 

  82. R. M. Lovely and F. J. Bloore,Lett. Nuovo Cimento 6, Ser. 2, 302 (1973).

    Google Scholar 

  83. R. Jagannathan and R. Vasudevan,J. Math. Phys. 19, 1493 (1978).

    Google Scholar 

  84. N. Salingaros,Hadronic J. 3, 339 (1979).

    Google Scholar 

  85. A. Schober, W. Beiglbock, A. Bohm, and E. Takasugi,Seventh International Colloquium and Integrative Conf. on Group Theory and Math. Phys. (Sept. 1979).

  86. L. P. Horwitz, D. Sepunaru, and L. C. Biedenharn,Ann. Isr. Phys. Soc. 3, 300 (1980).

    Google Scholar 

  87. P. A. M. Dirac,The Principles of Quantum Mechanics, 2nd. Ed. (Oxford, New York, 1935) Chapter XII.

    Google Scholar 

  88. P. A. M. Dirac,Proc. Royal Soc. A117, 610 (1928).

    Google Scholar 

  89. G. Arfken,Mathematical Methods for Physicists (Academic Press, New York 1970).

    Google Scholar 

  90. A. Ramakrishnan,Symp. Theor. Phys. Math. 10, 63 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Science Foundation under Grant ISP-80-11451.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poole, C.P., Farach, H.A. Pauli-Dirac matrix generators of Clifford Algebras. Found Phys 12, 719–738 (1982). https://doi.org/10.1007/BF00729808

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00729808

Keywords

Navigation