Skip to main content
Log in

Direct STM mapping of the superconducting energy gap in single crystal BI2SR2CACU2O8+x

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Scanning tunneling spectroscopy applied to BiO cleavage planes of 90 KT c BSCCO 2212 at 4.2 K simultaneously provides topography and localdI/dV spectra (superconducting DOS). The spectra, which are similar to recent photoemission spectra, confirm a large gap parameter Δ(x, y) associated with an apparently gapless DOS on the uppermost layer. Transverse spatial variations of Δ on a 100 Å scale are attributed to variations in BiO metallicity, presumably originating in oxygen stoichiometry variations in an unannealed crystal. We identify two characteristicdI/dV spectral shapes with regions of metallic and nonmetallic BiO layers, and can relate these by the McMillan model of the superconducting proximity effect. A sharply peaked spectral shape, similar to that observed in photoemission, is predicted for the metallic BiO layer induced superconducting by its proximity to the underlying CuO2 planes. The short mean free path and short coherence length imply that both tunneling and photoemission spectra are heavily weighted toward contributions from the BiO layer in fully metallic 2212. The present results and analysis thus suggest that the superconducting proximity effect influences the lineshapes seen by both techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Wolf,Principles of Electron Tunneling Spectroscopy (Oxford University Press, New York, 1989).

    Google Scholar 

  2. C. G. Olson, R. Liu, A.-B. Yang, D. W. Lynch, A. J. Arko, R. S. List, D. W. Veal, Y. C. Chang, P. Z. Jiang, and A. P. Paulikas,Science 245, 731 (1989).

    Google Scholar 

  3. S. Massida. J. Yu, and A. J. Freeman,Physica C 152, 251 (1988).

    Google Scholar 

  4. W. C. Lee, J. H. Cho, and D. C. Johnston,Phys. Rev. B 43, 457 (1991).

    Google Scholar 

  5. B. O. Wells, Z.-X. Shen, D. S. Dessau, W. E. Spicer, C. G. Olson, D. B. Mitzi, A. Kapitulnik, R. S. List, and A. Arko.Phys. Rev. Lett. 65, 3056 (1990).

    Google Scholar 

  6. D. S. Dessau, B. O. Wells, Z.-X. Shen, W. E. Spicer, A. J. Arko, R. S. List, D. B. Mitzi, and A. Kapitulnik,Phys. Rev. Lett. 66, 2160 (1991).

    Google Scholar 

  7. Y. Hwu, L. Lozzi, M. Marsi, S. La Rosa, M. Winokur, P. Davis, M. Onellion, H. Berger, F. Gozzo, F. Levy, and G. Margaritondo,Phys. Rev. Lett. 67, 2573 (1991).

    Google Scholar 

  8. Z.-X. Shen, D. S. Dessau, B. O. Wells, D. M. King, W. E. Spicer, A. J. Arko, D. Marshall, L. W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, J. DiCarlo, A. G. Loeser, and C. H. Park,Phys. Rev. Lett. 70, 1553 (1993).

    Google Scholar 

  9. C. Wang, B. Giambattista, C. G. Slough, R. V. Coleman, and M. A. Subramanian,Phys. Rev. B 42, 8890 (1990).

    Google Scholar 

  10. T. Hasegawa, M. Nantoh. and K. Kitazawa,Jpn. J. Appl. Phys. 30, L276 (1991).

    Google Scholar 

  11. M. Nantoh, S. Heike, H. Ikuta, T. Hasegawa, and K. Kitazawa,Physica C 185–189, 861 (1991).

    Google Scholar 

  12. J. X. Liu, J.-C. Wan, A. M. Goldman, Y. C. Chang, and P. Z. Jiang,Phys. Rev. Lett. 67, 2195 (1991).

    Google Scholar 

  13. Zhe Zhang and C. M. Lieber,Phys. Rev. B 47, 3423 (1993).

    Google Scholar 

  14. D. Mandrus, J. Hartge, L. Forro, C. Kendziora, and L. Mihaly,Europhys. Lett. 22, 199 (1993), and references therein.

    Google Scholar 

  15. J. M. Valles, Jr., R. C. Dynes, A. M. Cucolo, M. Gurvitch, L. F. Schneemeyer, J. P. Garno, and J. V. Waszcak,Phys. Rev. B 44, 11986 (1991).

    Google Scholar 

  16. H. L. Edwards, J. T. Markert, and A. L. de Lozanne,Phys. Rev. Lett. 69 2967 (1992).

    Google Scholar 

  17. J. D. Jorgenson,Phys. Today, June 1991, p. 34.

  18. D. B. Mitzi, L. W. Lombardo, A. Kapitulnik, S. S. Laderman, and R. D. Jacowitz,Phys. Rev. B 41, 6564 (1990).

    Google Scholar 

  19. H. J. Tao, A. Chang, F. Lu and E. L. Wolf,Phys. Rev. B 45, 10, 622 (1992).

    Google Scholar 

  20. A. Chang, Z. Rong, Yu. Ivanchenko, F. Lu, and E. L. Wolf,Phys. Rev. B 46, 5692 (1992).

    Google Scholar 

  21. Z. Y. Rong, A. Chang, and E. L. Wolf.Rev. Sci. Instrum. 63, 3646 (1992).

    Google Scholar 

  22. A. Chang, Yu. M. Ivanchenko, Z. Y. Rong, and E. L. Wolf,Surf. Sci. L274, L504 (1992).

    Google Scholar 

  23. Yu. M. Ivanchenko, A. Chang, Z. Y. Rong, and E. L. Wolf,Phys. Lett. A 173, 300 (1993).

    Google Scholar 

  24. W. L. McMillan,Phys. Rev. 175, 537 (1968).

    Google Scholar 

  25. G. Deutscher and K. A. Muller,Phys. Rev. Lett. 59, 1745 (1987).

    Google Scholar 

  26. S. W. Pierson and O. T. Valls,Phys. Rev. B 45, 2458 (1992).

    Google Scholar 

  27. P. Monthoux, A.V. Balatsky, and D. Pines,Phys. Rev. Lett. 67, 3448 (1991).

    Google Scholar 

  28. B. Levi inPhys. Today, May 1993 pp. 17–20 and references therein.

  29. R. A. Klemm and S. Liu,Phys. Rev. B 44, 7526 (1991); S. Liu and R. A. Klemm,Phys. Rev. B 45, 415 (1992).

    Google Scholar 

  30. S. Chakravarty, A. Sudbo, P. W. Anderson, and S. Strong,Science 261, 337 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, E.L., Chang, A., Rong, Z.Y. et al. Direct STM mapping of the superconducting energy gap in single crystal BI2SR2CACU2O8+x . J Supercond 7, 355–360 (1994). https://doi.org/10.1007/BF00724568

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00724568

Key words

Navigation