Skip to main content
Log in

Electronic speckle pattern interferometry on a microscopic scale

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

An electronic speckle pattern interferometer that incorporates a commercial, long-working-distance microscope is described which provides new opportunities to perform nondestructive inspection for applications in fields such as microelectronics. The long-working-distance microscrope was attached directly to the CCD camera to form a compact, portable system with a field of view that was variable over several mm in width. Alignment was greatly simplified because the skewed Michelson interferometer configuration used a speckled reference beam imaged from a diffusely reflecting reference surface that was positioned adjacent to the test object. To demonstrate the performance of the micro-ESPI instrument, fringe patterns were recorded for the quasi-static cantilever deflection of a 1 mm-wide interconnect clip from an electronics socket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Butters and J. A. Leendertz, Holographic and video techniques applied to engineering measurement,Trans. Inst. Measurement Control 4:349–354 (1971).

    Google Scholar 

  2. C. Wykes, Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements,Opt. Eng. 21:400–406 (1982).

    Google Scholar 

  3. S. Winther, 3D strain measurements using ESPI,Optics Lasers Eng. 8:45–57 (1988).

    Google Scholar 

  4. O. J. Lokberg, ESPI—The ultimate holographic tool for vibration analysis?J. Acoust. Soc. Am. 75:1783–1791 (1984).

    Google Scholar 

  5. K. Creath and G. Å. Slettemoen, Vibration observation techniques for digital speckle pattern interferometry,J. Opt. Soc. Am. A 2:1629–1636 (1985).

    Google Scholar 

  6. J. F. Clarady, Electronic holographic NDE, inReview of Progress in Quantitative Nondestructive Testing, Vol. 9, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1990), pp. 1031–1038.

    Google Scholar 

  7. B. P. Holownia, Non-destructive testing of overlap shear joints using electronic speckle pattern interferometry,Optics Lasers Eng 6:79–90 (1985).

    Google Scholar 

  8. S. Nakadate, T. Yatagai, and H. Saito, Electronic speckle pattern interferometry using digital image processing techniques,Appl. Opt. 19:1879–1883 (1980).

    Google Scholar 

  9. D. P. Herbert, Inspection of out-of-plane surface motion over small areas using electronic speckle pattern interferometry,Optics Lasers Eng. 4:229–239 (1983).

    Google Scholar 

  10. D. P. Herbert, A. H. M. Al-Hassani, and M. O. W. Richardson, The use of electronic speckle pattern interferometry (ESPI) in the crack propagation analysis of epoxy resins,Optics Lasers Eng. 5:249–262 (1984).

    Google Scholar 

  11. B. Sharp, Electronic speckle pattern interferometry (ESPI),Opt. Lasers Eng. 11:241–255 (1989).

    Google Scholar 

  12. G. Å. Slettemoen, Optimal signal processing in electronic speckle pattern interferometry,Opt. Commun. 23:213–216 (1977).

    Google Scholar 

  13. G. Å. Slettemoen, General analysis of fringe contrast in electronic speckle pattern interferometry,Opt. Acta 26:313–327 (1979).

    Google Scholar 

  14. R. Jones and C. Wykes, General parameters for the design and optimization of electronic speckle pattern interferometers,Opt. Acta 28:949–972 (1981).

    Google Scholar 

  15. R. Jones and C. Wykes,Holographic and Speckle Interferometry, 2nd Ed. (Cambridge University Press, Cambridge, U.K., 1989), pp. 167–168.

    Google Scholar 

  16. G. Å. Slettemoen, Electronic speckle pattern interferometric system based on a speckle reference beam,Appl. Opt. 19:616–623 (1980).

    Google Scholar 

  17. C. Joenathan and R. Torroba, Modified electronic speckle pattern interferometer employing an off-axis reference beam,Appl. Opt. 30:1169–1171 (1991).

    Google Scholar 

  18. J. A. Leendertz and J. N. Butters, An image shearing speckle pattern interferometer for measuring bending moments,J. Phys. E: Sci. Instr. 6:1107–1110 (1973).

    Google Scholar 

  19. Y. Y. Hung and C. E. Taylor, Measurement of slopes of structural deflections by speckle-shearing interferometry,Exp. Mech. 14:281–285 (1974).

    Google Scholar 

  20. P. F. Luo, Y. J. Chao, M. A. Sutton, and W. H. Peters, III, Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,Exp. Mech. 33:123–132 (1993).

    Google Scholar 

  21. J. P. Waters, Interferometric Holography, inHolographic Nondestructive Testing, R. K. Erf, ed. (Academic Press, New York, 1974), pp. 89–90.

    Google Scholar 

  22. K. Creath, Averaging double exposure speckle interferograms,Opt. Lett. 10:582–584 (1985).

    Google Scholar 

  23. K. A. Stetson and W. R. Brohinsky, Electro-optic holography system for vibration analysis and nondestructive testing,Opt. Eng. 26:1234–1239 (1987).

    Google Scholar 

  24. K. A. Stetson, W. R. Brohinsky, J. Wahid, and T. Bushman, An electro-optic holography system with real-time arithmetic processing,J. Nondestr. Eval. 8:69–76 (1989).

    Google Scholar 

  25. K. Creath, Phase-shifting speckle interferometry,Appl. Opt. 24:3053–3058 (1985).

    Google Scholar 

  26. D. W. Robinson and D. C. Williams, Digital phase stepping speckle interferometry,Opt. Commun. 57:26–30 (1986).

    Google Scholar 

  27. B. F. Pouet, T. C. Chatters, and S. Krishnaswamy, Synchronized reference updating technique for electronic speckle interferometry,J. Nondestr. Eval. 12:133–138 (1993).

    Google Scholar 

  28. B. Pouet and S. Krishnaswamy, Additive/subtractive decorrelated electronic speckle pattern interferometry,Opt. Eng. 32:1360–1369 (1993).

    Google Scholar 

  29. M. V. Mantravadi, Lateral shearing interferometers, inOptical Shop Testing, 2nd Ed., D. Malacara, ed (John Wiley, New York, 1992), pp. 123–172.

    Google Scholar 

  30. Y. Y. Hung, A speckle shearing interferometer: A tool for measuring derivatives of surface displacements,Opt. Commun. 11:132–135 (1974).

    Google Scholar 

  31. Y. Y. Hung, Shearography: A novel and practical approach for nondestructive inspection,J. Nondestr. Eval. 8:55–67 (1989).

    Google Scholar 

  32. F. S. Chau, S. L. Toh, C. J. Tay, and H. M. Shang, Some examples of nondestructive flaw detection by shearography,J. Nondestr. Eval. 8:225–234 (1989).

    Google Scholar 

  33. J. W. Newman, Shearographic inspection of aircraft structure,Mater. Eval. 49:1106–1109 (1991).

    Google Scholar 

  34. W. T. Chen and C. K. Lim, The Practice of Experimental Mechanics in Electronic Packaging: An Industrial Perspective, Proc. 1993 SEM Fall Conf. on Exp. Mech. (1993), pp. 121–133.

  35. D. Post, Moiré interferometry, inHandbook on Experimental Mechanics, A. S. Kobayashi, ed (Prentice-Hall, Englewood Cliffs, NJ, 1987), pp. 314–387.

    Google Scholar 

  36. B. Han and D. Post, Immersion interferometer for microscopic moiré interferometry,Exp. Mech. 32:38–41 (1992).

    Google Scholar 

  37. B. Han, Higher sensitivity moiré interferometry for micromechanics studies,Opt. Eng. 31:1517–1526 (1992).

    Google Scholar 

  38. R. Jones and C. Wykes, De-correlation effects in speckle pattern interferometry: 2. Displacement dependent de-correlation and applications to the observation of machine-induced strain,Opt. Acta 24:533–550 (1977).

    Google Scholar 

  39. M. Owner-Petersen, Decorrelation and fringe visibility: On the limiting behavior of various electronic speckle pattern correlation interferometers,J. Opt. Soc. Am. A 8:1082–1089 (1991).

    Google Scholar 

  40. J. S. Steckenrider and J. W. Wagner, Laser speckle decorrelation as a non-contact method for brittle-ductile fracture differentiation,Exp. Mech. 31:8–13 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deaton, J.B., Wagner, J.W. & Rogowski, R.S. Electronic speckle pattern interferometry on a microscopic scale. J Nondestruct Eval 13, 13–22 (1994). https://doi.org/10.1007/BF00723943

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00723943

Key words

Navigation