Skip to main content
Log in

Transformation of pea (Pisum sativum L.) byAgrobacterium tumefaciens

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Explants fromPisum sativum shoot cultures and epicotyls were transformed by cocultivation withAgrobacterium tumefaciens vectors carrying plant selectable markers and transformants could be selected on a medium containing kanamycin. Transformants could also be obtained at a low frequency by cocultivating small protoplast-derived colonies. The transformed nature of the calli obtained from selection was confirmed by opine assay and DNA analysis. In addition five cultivars of pea were tested for their response to seven differentAgrobacterium tumefaciens strains. The response pattern coincided largely between the different pea cultivars, being more dependent on the bacterial strain than the cultivar used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

BA:

6-benzyladenine

Km:

kanamycin

NAA:

∝-naphthaleneacetic acid

NOS:

nopaline synthase

NPT:

neomycin phosphotransferase

OCS:

octopine synthase

References

  • Barton KA, Binns AN, Matzke ASM Chilton M-D (1983) Cell 32: 1033–10

    Google Scholar 

  • Bercetche J, Chriqui D, Adam S, David C (1987) Plant Science 52: 195–210

    Google Scholar 

  • Byrne MC, McDonnell RE, Wright MS, Carnes MG (1987) Plant Cell Tissue Organ Cult. 8: 3–15

    Google Scholar 

  • Czemilofsky AP, Hain R, Herrera-Estrella L, Lörtz H, Goyvaerts E, Baker BJ, Schell J (1986) DNA 5:101–113

    Google Scholar 

  • De Greve H, Decraemer H, Seurinck J, Van Montagu M, Schell J (1981) Plasmid 6:235–248

    Google Scholar 

  • Deak M, Kim GB, Koncz C, Dudits D (1986) Plant Cell Rep. 5:97–100

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) Plant Mol. Biol. Rep. 1:19–21

    Google Scholar 

  • Eapen S, Köhler F, Gerdemann M, Schieder O (1987) Theor. Appl. Genet. 75:201–210

    Google Scholar 

  • Facciotti D, O'Neal JK, Lee S, Shewmaker CK (1985) Bio/Technology 3:241–246

    Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Eichholtz DA, Flick JS, Fink CL, Hoffman NL, Sanders P (1985) Bio/Technology 3:629–635

    Google Scholar 

  • Gamborg OL, Miller RA, Ojime K (1968) Exp. Cell. Res. 50:151–158

    Google Scholar 

  • Gheysen G, Dhaese P, Van Montagu M, Schell J (1985) In: Hohn B, Dennis ES (eds) Genetic flux in plants, Springer Verlag, Wien, pp 11–47

    Google Scholar 

  • Glimelius K (1984) Physiol. Plant. 61:38–44

    Google Scholar 

  • Hain R, Stabel P, Czernilofsky AP, Steinbiss HH, Herrera-Estrella L, Schell J (1985) Mol. Gen. Genet. 199:166–168

    Google Scholar 

  • Hepburn AG, Clarke LE, Pearson L, White S (1983) J. Mol. Appl. Gen. 2:315–329

    Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gosser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Bio/Technology 6:915–922

    Google Scholar 

  • Holsters M, Silva B, Van Vliet F, Genetello C, De Block M, Dhaese P, Depicker A, Inze D, Engler G, Villarroel R, Van Montagu M, Schell J (1980) Plasmid 3: 212–230

    Google Scholar 

  • Hussey G, Johnson RD, Warren S (1989) Protoplasma 148: 101–105

    Google Scholar 

  • Jensen JS, Marcker KA, Otten L, Schell J (1986) Nature 321:669–674

    Google Scholar 

  • Joos H, Inzé D, Caplan A, Sormann M, Van Montagu M, Schell J (1983) Cell 32: 1057–1067

    Google Scholar 

  • Mariotti D, Davey MR, Draper J, Freeman JP, Cocking EC (1984) Plant Cell Physiol. 25:473–482

    Google Scholar 

  • Miller JH (ed) (1972) Experiments in molecular genetics. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Otten LABM, Schilperoort RA (1978) Biochim. Biophys. Acta 527: 497–500

    Google Scholar 

  • Owens LD, Cress DE (1985) Plant Physiol. 77:89–94

    Google Scholar 

  • Pollock K, Barfield DG, Robinson SJ, Shields R (1985) Plant Cell Rep. 4:202–205

    Google Scholar 

  • Puonti-Kaerlas J, Eriksson T (1988) Plant Cell Rep. 7:242–245

    Google Scholar 

  • Sciaky D, Montoya AL, Chilton M-D (1978) Plasmid 1:238–253

    Google Scholar 

  • Steffen A, Eriksson T, Schieder O (1986) Theor. Appl. Genet. 72: 135–140

    Google Scholar 

  • Sukhapinda K, Spivey R, Shakin EA (1987) Plant Mol. Biol. 8:201–216

    Google Scholar 

  • Van Haute E, Joos H, Maes M, Warren G, Van Montagu M, Schell J (1983) EMBO J. 2:411–417

    Google Scholar 

  • Velten J, Schell J (1985) Nucleic Acids Res. 13:6981–6998

    Google Scholar 

  • Vervliet G, Holsters M, Teuclay H, Van Montagu M, Schell J (1975) J. Gen. Virol. 26:33–48

    Google Scholar 

  • Webb KJ (1986) Theor. Appl. Genet. 72:53–58

    Google Scholar 

  • Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J (1982) Mol. Gen. Genet. 186:16–22

    Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J (1983) EMBO J. 2: 2143–2150

    Google Scholar 

  • Zambryski P, Herrera-Estrella L, De Block M, Van Montagu M, Schell J (1984) In: Hollaender A, Setlow J (eds) Genetic engineering, principles and methods, Vol VI, Plenum Press, New York, pp 253–278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puonti-Kaerlas, J., Stabel, P. & Eriksson, T. Transformation of pea (Pisum sativum L.) byAgrobacterium tumefaciens . Plant Cell Reports 8, 321–324 (1989). https://doi.org/10.1007/BF00716664

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00716664

Keywords

Navigation