Skip to main content
Log in

Mixing-height estimation in the convective boundary layer using sodar data

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Sodar has been used for about 20 years to determine mixing height. However, estimation of the height of a convective boundary layer (CBL) that exceeds the sodar-probing range is still an unsolved question. As one possible way, it is suggested that one adapt a simple mixed-layer model to sodar observations during the morning growth period of the CBL, when its top can be clearly detected. Results are compared with other methods for CBL-height estimation from sodar data that have been proposed in the literature. Finally, some prognostic aspects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J. C., Goutorbe, J. P., and Perrier, A.: 1986, ‘HAPEX-MOBILHY — A Hydrologic-Atmospheric Pilot Experiment for the Study of Water Budget and Evaporation Flux at the Climatic Scale’,Bull. Amer. Meteorol. Soc. 67, 138–144.

    Google Scholar 

  • Angevine, W. M., White, A. B., and Avery, S. K.: 1994, ‘Boundary-Layer Depth and Entrainment Zone Characterization with a Boundary-Layer Profiler’,Boundary-Layer Meteorol. 68, 375–385.

    Google Scholar 

  • Batchvarova, E. and Gryning, S. E.: 1991, ‘Applied Model for the Growth of the Daytime Mixed Layer’,Boundary-Layer Meteorol. 56, 261–274.

    Google Scholar 

  • Beyrich, F.: 1992, ‘Discussion on “Sodar Estimates of Surface Heat Flux and Mixed Layer Depth Compared with Direct Measurements”’,Atmos. Environm. 26A, 2459–2461.

    Google Scholar 

  • Beyrich, F. and Weill, A.: 1993, ‘Some Aspects of Determining the Stable Boundary Layer Depth from Sodar Data’,Boundary-Layer Meteorol. 63, 97–116.

    Google Scholar 

  • Bonino, G., Longhetto, A., Trivero, P., Elisei, G., and Marzorati, A.: 1989, ‘Evolution of the Atmospheric Convective Boundary Layer Monitored by the Metric RASS’,Il Nuovo Cimento 12, 163–171.

    Google Scholar 

  • Carson, D. J.: 1973, ‘The Development of a Dry Inversion-Capped Convective Unstable Boundary Layer’,Quart. J. Roy. Meteorol. Soc. 99, 450–467.

    Google Scholar 

  • Coulter, R. L.: 1979, ‘A Comparison of Three Methods for Measuring Mixing Layer Height’,J. Appl. Meteorol. 18, 1495–1499.

    Google Scholar 

  • Driedonks, A. G. M.: 1982, ‘Models and Observations of the Growth of the Atmospheric Boundary Layer’,Boundary-Layer Meteorol. 23, 283–306.

    Google Scholar 

  • Driedonks, A. G. M. and Tennekes, H.: 1984, ‘Entrainment Effects in the Well-Mixed Atmospheric Boundary Layer’,Boundary-Layer Meteorol. 30, 75–105.

    Google Scholar 

  • European Weather Bulletin (1991–92)16, 17 Deutscher Wetterdienst—Zentralamt Offenbach.

  • Glendening, J. W.: 1990, ‘A Mixed Layer Simulation of Daytime Boundary Layer Variations within the Los Angeles Basin’,Mon. Wea. Rev. 118, 1531–1550.

    Google Scholar 

  • Goutorbe, J. P.: 1991, ‘A Critical Assessment of the SAMER-Network Accuracy’, in T. J. Schmugge and J. C. Andre (eds.),Land Surface Evaporation—Measurement and Parameterization, Springer, New York-Berlin-Heidelberg, pp. 171–182.

    Google Scholar 

  • Gryning, S. E. and Batchvarova, E.: 1990, ‘Simple Model of the Daytime Boundary Layer Height’,Proc. 9th Symp. Turbulence & Diffusion, Amer. Meteorol. Soc., Roskilde, 379–382.

  • Gutsche, A. and Lefebvre, C.: 1981, ‘Statistik der maximalen Mischungsschichthöhe nach Radiosondenmessungen an den aerologischen Stationen des Deutschen Wetterdienstes im Zeitraum 1957–1973’,Berichte des Dt. Wetterdienstes, No. 154, Offenbach

  • Holtslag, A. A. M. and van Ulden, A. P.: 1983, ‘A Simple Scheme for Daytime Estimates of the Surface Fluxes from Routine Weather Data’,J. Climate Appl. Meteorol. 22, 517–529.

    Google Scholar 

  • Holzworth, C. G.: 1967, ‘Mixing Depths, Wind Speeds and Air Pollution Potential for Selected Locations in the United States’,J. Appl. Meteorol. 6, 1039–1044.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’,J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Kaimal, J. C., Abshire, N. L., Chadwick, R. B., Decker, M. T., Hooke, W. H., Kroepfli, R. A., Neff, W. D., Pasqualucci, F., and Hildebrand, P. H.: 1982, ‘Estimating the Depth of the Daytime Convective Boundary Layer’,J. Appl. Meteorol. 21, 1123–1129.

    Google Scholar 

  • Kolarova, M., Yordanov, D., Sirakov, D., Dzholov, G., Karadzhov, D., and Aleksandrov, L.: 1989, ‘Parametrizatsiya konvektivnogo planetarnogo pogranichnogo sloya’,Izv. Akad. Nauk SSSRFiz. Atmos. Okeana 25, 659–664.

    Google Scholar 

  • Louis, J. F., Tiedke, M., and Geleyn, J. F.: 1982, ‘A Short History of the Operational Planetary Boundary Layer Parameterization at ECMWF’, inWorkshop on PBL-parameterization, ECMWF, Reading, pp. 59–79.

  • McElroy, J. L. and Smith, T. B.: 1991, ‘Lidar Descriptions of Mixed-Layer Thickness Characteristics in a Complex Terrain/Coastal Environment’,J. Appl. Meteorol. 30, 585–597.

    Google Scholar 

  • Melas, D.: 1990, ‘Sodar Estimates of Surface Heat Flux and Mixed Layer Depth Compared with Direct Measurements’,Atmos. Environm. 24A, 2847–2854.

    Google Scholar 

  • Rayner, K. N. and Watson, D.: 1991, ‘Operational Prediction of Daytime Mixed Layer Heights for Dispersion Modeling’,Atmos. Environm. 25A, 1427–1436.

    Google Scholar 

  • Schaller, E. and Seiler, W.: 1993, ‘Assessment of Photochemical Reactivity of the Atmosphere in Former East Germany: The SANA Project’,Proc. 86th Ann. Meeting Air & Waste Managm. Assoc., Denver/Co.

  • Singal, S. P.: 1988, ‘The Use of an Acoustic Sounder in Air Quality Studies’,J. Sci. Industr. Res. 9, 520–533.

    Google Scholar 

  • Singal, S. and Aggarwal, S. K.: 1979, ‘Sodar and Radiosonde Studies of Thermal Structure of the Lower Atmosphere at Delhi’,Ind. J. Radio Space Phys. 8, 76–81.

    Google Scholar 

  • Sorbjan, Z., Coulter, R. L., and Wesely, M. L.: 1991, ‘Similarity Scaling Applied to Sodar Observations in the Convective Boundary Layer above an Irregular Hill’,Boundary-Layer Meteorol. 56, 33–50.

    Google Scholar 

  • Stull, R. B.: 1976, ‘The Energetics of Entrainment Across a Density Interface’,J. Atmos. Sci. 33, 1260–1267.

    Google Scholar 

  • Steyn, D. G.: 1990, ‘An Advective Mixed Layer Model for Heat and Moisture Incorporating an Analytic Expression for Moisture Entrainment’,Boundary-Layer Meteorol. 53, 21–31.

    Google Scholar 

  • Taconet, O. and Weill, A.: 1983, ‘Convective Plumes in the Atmospheric Boundary Layer as Observed with an Acoustic Doppler Sodar’,Boundary-Layer Meteorol. 25, 143–158.

    Google Scholar 

  • Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion above a Convective Boundary Layer’,J. Atmos. Sci. 30, 558–567.

    Google Scholar 

  • Uliasz, M.: 1990, ‘Development of the Mesoscale Dispersion Modelling System using Personal Computers. Part I: Models and Computer Implementation’,Z. Meteorol. 40, 110–120.

    Google Scholar 

  • Walczewski, J.: 1989, ‘Development of Sodar and Acoustic Sounding of the Atmosphere in Poland’,Z. Meteorol. 39, 129–141.

    Google Scholar 

  • Wilczak, J. M. and Phillips, M. S.: 1986, ‘An Indirect Estimation of Convective Boundary Layer Structure for use in Pollution Dispersion Models’,J. Climate Appl. Meteorol. 25, 1609–1624.

    Google Scholar 

  • Wyngaard, J. C., Izumi, Y., and Collins, S. A.: 1971, ‘Behaviour of the Refractive Index Structure Parameter near Ground’,J. Optical Soc. Amer. 61, 1646–1650.

    Google Scholar 

  • Yamada, T.: 1976, ‘On the Similarity Functions A, B and C of the Planetary Boundary Layer,J. Atmos. Sci. 33, 781–793.

    Google Scholar 

  • Zeman, O. and Tennekes, H.: 1977, ‘Parameterization of the Turbulent Kinetic Energy Budget at the Top of the Daytime Boundary Layer’,J. Atmos. Sci. 34, 111–123.

    Google Scholar 

  • Zilitinkevich, S. S.: 1975, ‘Comments on a Paper by H. Tennekes’,J. Atmos. Sci. 32, 991–992.

    Google Scholar 

  • Zilitinkevich, S. S.: 1988, ‘Penetrative Turbulent Convection’, (in Russ.) Tallinn: Valgus, 207 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyrich, F. Mixing-height estimation in the convective boundary layer using sodar data. Boundary-Layer Meteorol 74, 1–18 (1995). https://doi.org/10.1007/BF00715708

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00715708

Keywords

Navigation