Skip to main content
Log in

Assessment of metal and alloy resistance to cracking. studies of fatigue crack growth and kinetic fatigue fracture diagrams

  • Published:
Soviet materials science : a transl. of Fiziko-khimicheskaya mekhanika materialov / Academy of Sciences of the Ukrainian SSR Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. S. Ivanova, Fatigue Fracture in Metals [in Russian], Metallurgizdat (1963).

  2. S. V. Serensen, Fatigue in Metals: Encyclopedic Dictionary of Physics [in Russian], Vol. V, Sovetskaya Entsiklopediya (1966), pp. 273–274.

  3. I. Schijve, Fatigue Crack Propagation, ASTM STP 415, ASTM (1967), pp. 415–459.

  4. J. Nemec, Eng. Fracture Mech.,2, No. 2, 145–150 (1970).

    Google Scholar 

  5. S. Ya. Yarema, Fiz.-Khim. Mekh. Mater., No. 6, 66–72 (1973).

    Google Scholar 

  6. A. M. Freudenthal, Eng. Fracture Mech.,6, No. 4, 775–793 (1974).

    Google Scholar 

  7. N. E. Frost, K. J. Marsh, and L. P. Pook, Metal Fatigue, Clarendon Press, Oxford (1974).

    Google Scholar 

  8. V. S. Kuksenko, V. S. Ryskin, V. J. Betekhin, and A. I. Slutsker, Int. J. Fract.,11, No. 5, 829–840 (1975).

    Google Scholar 

  9. G. V. Uzhik, Strength and Plasticity of Metals at Low Temperatures [in Russian], Izd. Akad. Nauk SSSR (1950).

  10. Applied Problems in Fracture Toughness [Russian translation], Mir (1968).

  11. G. Liebowitz, Fracture [Russian translation], Vol. 1, Mir (1973), pp. 7–14.

  12. A. J. McEvily, Jr., and W. Illg, “The rate of fatigue crack propagation in two aluminum alloys,” Nat. Advis. Comm. Aeronaut., Tech. Note 4394 (1958).

  13. N. E. Frost and D. S. Dugdale, J. Mech. Phys. Solids,6, No. 2, 92–111 (1958).

    Google Scholar 

  14. Proc. Crack Prop. Symp., Vols. 1 and 2, Cranfield College of Aeronautics (1962).

  15. W. Weibull, Proc. Crack Prop. Symp., Cranfield College of Aeronautics (1962), pp. 271–286.

  16. V. S. Ivanova, V. G. Kudryashov, and V. F. Terent'ev, in: Strength of Metals under Cyclic Loads [in Russian], Nauka (1967), pp. 98–107.

  17. R. H. Christensen and M. B. Harmon, Fatigue Crack Propagation, ASTM STP 415, ASTM (1967), pp. 5–24.

  18. S. E. Gurevich and L. D. Edidovich, in: Fatigue and Fracture Toughness in Metals [in Russian], Nauka (1974), pp. 36–78.

  19. D. W. Hoeppner and W. E. Krupp, Eng. Fracture Mech.,6, No. 1, 47–70 (1974).

    Google Scholar 

  20. S. Kocańda, Mechanika Teoretyczna i Stosowana,13, No. 3, 307–327 (1975).

    Google Scholar 

  21. A. K. Head, Philos. Mag.,44, Ser. 7, No. 356, 925–938 (1953).

    Google Scholar 

  22. G. Neuber, Stress Concentration [Russian translation], Ogiz (1947).

  23. P. C. Paris, “A note on the variables affecting the rate of crack growth due to cyclic loading,” The Boeing Company, Document NO, D-17867, Addendum N, September 12, 1957.

  24. P. C. Paris, M. P. Gomez, and W. E. Anderson, The Trend in Engineering,13, No. 1, 9–14 (1961).

    Google Scholar 

  25. P. C. Paris and F. Erdogan, Trans. ASME, s. D,85, J. Basic Eng., No. 4, 528–534 (1963).

    Google Scholar 

  26. B. A. Drozdovskii, V. M. Markochev, and Ya. B. Fridman, Dokl. Akad. Nauk SSSR,174, No. 4, 807–810 (1967).

    Google Scholar 

  27. B. A. Drozdovskii, V. M. Markochev, and V. Yu. Gol'tsev, in: Deformation and Fracture Under Thermal and Mechanical Loads [in Russian], Vol. 3, Atomgiz (1969), pp. 101–104.

  28. W. J. Plumbridge, J. Mater. Sci.,7, No. 8, 939–962 (1972).

    Google Scholar 

  29. J. C. Grosskreutz, Dritte Internationale Tagung über den Bruch, Zusammenstellung der Fachberichte, Vol. 1, München (1973).

  30. S. Ya. Yarema and S. I. Mikitishin, Fiz.-Khim. Mekh. Mater., No. 6, 47–54 (1975).

    Google Scholar 

  31. V. S. Ivanova (editor), Fatigue and Brittleness in Metallic Materials [in Russian], Nauka (1968).

  32. S. Ya. Yarema and E. L. Kharish, Probl. Prochn., No. 8, 28–32 (1970).

    Google Scholar 

  33. T. Kawasaki, S. Nakanishi, Y. Sawaki, K. Hatanaka, and T. Yocobori, Eng. Fracture Mech.,7, No. 3, 465–472 (1975).

    Google Scholar 

  34. A. Yuen, S. W. Hopkins, G. R. Leverant, and C. A. Rau, Met. Trans.,5, No. 8, 1833–1842 (1974).

    Google Scholar 

  35. V. S. Ivanova, L. R. Botvina, and L. I. Maslov, in: Fatigue and Fracture Toughness in Metals [in Russian], Nauka (1974), pp. 79–108.

  36. R. J. Cook, P. E. Irving, G. S. Booth, and C. J. Beevers, Eng. Fracture Mech.,7, No. 1, 69–77 (1975).

    Google Scholar 

  37. O. N. Romaniv, N. A. Deev, Ya. N. Gladkii, and A. Z. Student, Fiz.-Khim. Mekh. Mater., No. 5, 23–28 (1975).

    Google Scholar 

  38. T. A. Gordeeva and I. P. Zhogina, Zavod. Lab.,42, No. 4, 464–469 (1976).

    Google Scholar 

  39. V. V. Popovich and S. Ya. Yarema, Fiz.-Khim. Mekh. Mater., No. 1, 70–74 (1976).

    Google Scholar 

  40. S. Ya. Yarema, A. Ya. Krasovskii, O. P. Ostash, and V. A. Stepanenko, Probl. Prochn., No. 3, 21–26 (1977).

    Google Scholar 

  41. A. Ya. Krasovskii, O. P. Ostash, V. A. Stepanenko, and S. Ya. Yarema, Probl. Prochn., No. 4, 74–78 (1977).

    Google Scholar 

  42. O. P. Ostash, S. Ya. Yarema, and V. A. Stepanenko, Fiz.-Khim. Mekh. Mater. No. 3, 26–30 (1977).

    Google Scholar 

  43. T. C. Lindley, C. E. Richards, and R. O. Ritchie, Metallurgy and Metal Forming,43, No. 9, 268–280 (1976).

    Google Scholar 

  44. S. Ya. Yarema and O. P. Ostash, Fiz.-Khim. Mekh. Mater., No. 2, 48–52 (1975).

    Google Scholar 

  45. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka (1974).

  46. V. V. Panasyuk, Fiz.-Khim. Mekh. Mater., No. 4, 3–13 (1974).

    Google Scholar 

  47. N. E. Frost, Proc. of the First Intern. Conf. Fracture, Vol. 3, Sendai (1966), pp. 1433–1459.

    Google Scholar 

  48. E. Bessel, W. Clark, and W. Prail, in: New Methods of Assessing the Resistance of Metals to Brittle Fracture [Russian translation], Mir (1972), pp. 213–244.

  49. A. R. Jack and A. T. Price, Metal Constr., Brit. Weld. J.,3, No. 11, 416–419 (1971).

    Google Scholar 

  50. N. M. Borodachev, in: Strength and Life of Aircraft Structures [in Russian], Issue 4 (1971), pp. 62–65.

  51. W. G. Clark, Jr., Met. Eng. Q.,14, No. 3, 16–22 (1974).

    Google Scholar 

  52. S. V. Serensen, Resistance of Materials to Fatigue and Brittle Fracture [in Russian], Atomizdat (1975).

  53. H. A. Wood, Eng. Fracture Mech.,7, No. 3, 557–564 (1975).

    Google Scholar 

  54. L. P. Pook, J. Strain Anal.,10, No. 4, 242–250 (1975).

    Google Scholar 

  55. R. H. Christensen, Proc. Crack Prop. Symp., Cranfield College of Aeronautics (1962), pp. 326–375.

  56. T. Yokobori, M. Tanaka, H. Hayakawa, T. Yoshimura, and S. Sasahira, Rep. Res. Inst. Strength Fract. Mater., Tohoku Univ.,3, No. 2, 39–71 (1967).

    Google Scholar 

  57. G. A. Miller, Trans. ASM,62, No. 3, 651–658 (1969).

    Google Scholar 

  58. M. Castagna and M. Sarracino, Met. Ital.,64, No. 9, 415–420 (1972).

    Google Scholar 

  59. Koterazawa, Mori, Matsui, and Simo, Trans. ASME, Ser. D,95, Theor. Principles Eng. Calc., No. 4, 7–18 (1973).

    Google Scholar 

  60. V. A. Stepanenko and A. Ya. Krasovskii, Probl. Prochn., No. 7, 52–54 (1974).

    Google Scholar 

  61. D. P. Wilhem, Fatigue Crack Propagation, ASTM STP 415, ASTM (1967), pp. 363–383.

  62. L. P. Pook, Metal Sci.,10, No. 9, 334–335 (1976).

    Google Scholar 

  63. D. Broek and J. Schijve, Aircraft Eng.,38, No. 11, 31–33 (1966).

    Google Scholar 

  64. J. M. Barsom, E. J. Imhof, and S. T. Rolfe, Eng. Fracture Mech.,2, No. 4, 301–317 (1971).

    Google Scholar 

  65. G. E. Nordmark and J. G. Kaufman, Eng. Fracture Mech.,4, No. 2, 193–204 (1972).

    Google Scholar 

  66. F. A. Heiser and W. Mortimer, Met. Trans.,3, No. 8, 2119–2123 (1972).

    Google Scholar 

  67. R. O. Ritchie, R. F. Smith, and J. F. Knott, Met. Sci.,9, No. 11, 485–492 (1975).

    Google Scholar 

  68. S. V. Serensen and N. A. Makhutov, in: Mechanics of Deformed Solids and Structures [in Russian], Mashinostroenie (1975), pp. 443–448.

  69. B. Edmondson, K. Formby, P. Yurkevich, and M. Stagg, in: New Methods of Assessing the Resistance of Metals to Brittle Fracture [Russian translation], Mir (1972), pp. 256–271.

  70. N. E. Dowling, Cracks and Fracture, ASTM STP 601, ASTM (1976), pp. 19–32.

  71. R. L. Tobler, ibid., pp. 346–370.

  72. W. Elber, Eng. Fracture Mech.,2, No. 1, 37–45 (1970).

    Google Scholar 

  73. N. J. I. Adams, Eng. Fracture Mech.,4, No. 3, 543–554 (1972).

    Google Scholar 

  74. T. T. Shih and R. P. Wei, Eng. Fracture Mech.,6, No. 1, 19–32 (1974).

    Google Scholar 

  75. H. L. Marcus, W. L. Morris, O. Buck, and J. D. Frandsen, Prospects of Fracture Mechanics, Leyden (1974), pp. 179–191.

  76. Yu. N. Rabotnov, Foreword to: V. Z. Parton and E. M. Morozov, Mechanics of Elastoplastic Fracture [in Russian], Nauka (1974), pp. 6–12.

  77. A. G. Pineau and R. M. Pelloux, Met. Trans.,5, No. 5, 1103–1112 (1974).

    Google Scholar 

  78. P. J. E. Forsyth, Proc. Crack Prop. Symp., Cranfield College of Aeronautics (1962), pp. 76–94.

  79. K. Tanaka, Eng. Fracture Mech.,6, No. 3, 493–507 (1974).

    Google Scholar 

  80. J. L. Robinson and C. J. Beevers, Met. Sci. J.,7, Sept., 153–159 (1973).

    Google Scholar 

  81. P. E. Irving and C. J. Beevers, Met. Trans.,5, No. 2, 391–398 (1974).

    Google Scholar 

  82. J. Masounave and J. P. Bailon, Scrip. Met.,10, No. 2, 165–170 (1976).

    Google Scholar 

  83. E. Hornbogen and K. H. Zum, Gahr, Acta Met.,24, 581–592 (1976).

    Google Scholar 

  84. P. C. Paris, Fatigue: Proc. Tenth SagamoreArmy Mater. Res. Conf. Syracuse Univ. Press (1964), pp. 107–132.

  85. S. R. Swanson, F. Cicci, and W. Hoppe, Fatigue Crack Propagation, ASTM STP 415, ASTM (1967), pp. 312–362.

  86. S. Ya. Yarema, I. B. Polutranko, and L. V. Ratych, Fiz.-Khim. Mekh. Mater., No. 3, 18–23 (1973).

    Google Scholar 

  87. S. Ya. Yarema, L. V. Ratych, and V. V. Popovich, Fiz.-Khim. Mekh. Mater., No. 3, 45–51 (1975).

    Google Scholar 

  88. W. C. Harrigan, Jr., D. L. Dull, and L. Raymond, Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, ASTM (1973), pp. 171–181.

  89. S. Ya. Yarema and V. V. Popovich, Fiz.-Khim. Mekh. Mater., No. 6, 23–27 (1976).

    Google Scholar 

  90. C. M. Hudson and S. K. Seward, Eng. Fracture Mech.,8, No. 2, 315–329 (1976).

    Google Scholar 

  91. V. W. Trebules, Jr., R. Roberts, and R. W. Hertzberg, Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, ASTM (1973), pp. 115–146.

  92. E. F. J. Von Euw, R. W. Hertzberg, and R. Roberts, Stress Analysis and Crack Growth, Part 1, ASTM STP 513, ASTM (1972), pp. 230–259.

  93. R. C. Rice and R. I. Stephens, Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, ASTM (1973), pp. 95–114.

  94. R. P. Wei and T. T. Shih, Int. J. Fract.,10, No. 1, 77–85 (1974).

    Google Scholar 

  95. Wosikowsky, Trans. ASME, Ser. D,97, Theor. Principles Eng. Calc., No. 4, 12–20 (1975).

    Google Scholar 

  96. D. A. Meyn, Met. Trans.,2A, No. 3, 853–865 (1971).

    Google Scholar 

  97. E. J. Imhof and J. M. Barsom, Progress in Flaw Growth and Fracture Toughness Testing ASTM STP 536, ASTM (1973), pp. 182–205.

  98. J. C. Radon, C. M. Branco, and L. E. Culver, Int. J. Fract.,12, No. 3, 467–469 (1976).

    Google Scholar 

  99. A. Hartman, Int. J. Fract. Mech.,1, No. 3, 167–183 (1965).

    Google Scholar 

  100. A. Hartman and J. Schijve, Eng. Fracture Mech.,1, No. 4, 615–631 (1970).

    Google Scholar 

  101. R. P. Wei, Eng. Fracture Mech.,1, No. 4, 633–651 (1970).

    Google Scholar 

  102. F. J. Bradshaw and C. Wheeler, Int. J. Fract. Mech.,5, No. 4, 255–268 (1969).

    Google Scholar 

  103. M. W. Mahoney and N. E. Paton, Nucl. Technol.,23, No. 3, 290–297 (1974).

    Google Scholar 

  104. O. N. Romaniv, G. N. Nikiforchin. and N. L. Kuklyak, Fiz.-Khim. Mekh. Mater., No. 1, 25–31 (1976).

    Google Scholar 

  105. O. N. Romaniv, G. N. Nikiforchin, and N. A. Deev, Fiz.-Khim. Mekh. Mater., No. 4, 9–24 (1976).

    Google Scholar 

  106. E. I. Pustyl'nik, Statistical Methods of Analyzing and Processing Observations [in Russian], Nauka (1968).

  107. V. S. Ivanova and V. F. Terent'ev, The Nature of Fatigue [in Russian], Metallurgiya, (1975).

  108. S. Ya. Yarema, Probl. Prochn., No. 8, 15–18 (1975).

    Google Scholar 

  109. J. E. Srawley and B. Gross, Mater. Res. Stand.,7, No. 4, 155–162 (1967).

    Google Scholar 

  110. R. C. Schwab, Paper ASME, N Met-16 (1969).

  111. V. Z. Parton and E. M. Morozov, Mechanics of Elastoplastic Fracture [in Russian], Nauka 1974.

  112. V. M. Markochev and A. G. Kraev, Zavod. Lab., No. 4, 469–473 (1976).

    Google Scholar 

  113. C. N. Freed and J. M. Krafft, J. Mat.,1, No. 4, 770–790 (1966).

    Google Scholar 

  114. W. F. Kirkwood and M. E. Prado, Cracks and Fracture, ASTM STP 601, ASTM (1976), pp. 262–273.

  115. S. Ya. Yarema and L. V. Ratych, Inventor's Certificate No. 415546; Byull. Izobr. Otkrytii, No. 6 (1974).

  116. S. Ya. Yarema, Fiz.-Khim. Mekh. Mater., No. 4, 25–39 (1976).

    Google Scholar 

  117. S. Ya. Yarema, Fiz.-Khim. Mekh. Mater., No. 1, 87–89 (1970).

    Google Scholar 

  118. S. Ya. Yarema, P. M. Vitvitskii, A. I. Zboromirskii, andO. P. Ostash, Fiz.-Khim. Mekh. Mater., No. 5, 34–39 (1974).

    Google Scholar 

  119. S. Ya. Yarema, G. S. Krestin, and A. I. Zboromirskii, Fiz.-Khim. Mekh. Mater., No. 1, 31–36 (1975).

    Google Scholar 

  120. S. Ya. Yarema and G. S. Krestin, Prikl. Mekh.,11, No. 9, 50–56 (1975).

    Google Scholar 

  121. N. N. Tkachenko, B. I. Kultan, and R. P. Svistun, Fiz.-Khim. Mekh. Mater., No. 1, 74–81 (1976).

    Google Scholar 

  122. S. Ya. Yarema, O. P. Ostash, V. P. Rychik, V. M. Beletskii, A. I. Zboromirskii, I. B. Polutranko, V. N. Belyaev, and G. S. Margolin, Fiz.-Khim. Mekh. Mater., No. 1, 46–51 (1977).

    Google Scholar 

  123. S. Ya. Yarema, O. P. Ostash, V. M. Beletskii, V. N. Belyaev, and A. I. Zboromirskii, Fiz.-Khim. Mekh. Mater., No. 2, 5–10 (1977).

    Google Scholar 

  124. M. Klesnil and P. Lukás, Eng. Fracture Mech.,4, No. 1, 77–92 (1972).

    Google Scholar 

  125. W. C. Harrigan, Jr., D. L. Dull, and L. Raymond, Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, ASTM (1973), pp. 171–181.

  126. A. M. Freudenthal, Eng. Fracture Mech.,5, No. 2, 403–414 (1973).

    Google Scholar 

  127. N. E. Frost, J. Mech. Eng. Sci.,4, No. 1, 22–35 (1962).

    Google Scholar 

  128. C. M. Hudson and J. T. Scardina, Eng. Fracture Mech.,1, No. 3, 429–446 (1969).

    Google Scholar 

  129. S. Pearson, Eng. Fracture Mech.,4, No. 1, 9–24 (1972).

    Google Scholar 

  130. M. Klesnil and P. Lukás, Mat. Sci. Eng.,9, No. 4, 231–240 (1972).

    Google Scholar 

  131. P. R. V. Evans, N. B. Owen, and L. N. McCartney, Eng. Fracture Mech.,6, No. 1, 183–193 (1974).

    Google Scholar 

  132. T. Kanazawa, S. Machida, and K. Itoga, Eng. Fracture Mech.,7, No. 3, 445–455 (1975).

    Google Scholar 

  133. W. E. K. Walker, Effects of Environment and Complex Load History, ASTM STP 462, ASTM (1970), pp. 1–15.

  134. J. Mautz and V. Weiss, Cracks and Fracture, ASTM STP 601, ASTM (1976), pp. 154–168.

  135. C. M. Branco, J. C. Radon, and L. E. Culver, J. Test. Eval.,3, No. 6, 407–413 (1975).

    Google Scholar 

  136. S. J. Maddox, Int. J. Fract.,11, No. 3, 389–408 (1975).

    Google Scholar 

  137. T. W. Crooker, Paper ASME, N PVP-2 (1971).

  138. Hubbard, Trans. ASME, Ser. D,91, Theor. Principles Eng. Calc., No. 4, 67–76 (1969).

    Google Scholar 

  139. H. Saal, Trans. ASME, Ser. D,94, J. Basic Eng., No. 1, 243–247.

  140. V. V. Panasyuk, A. E. Andreikiv, S. E. Kovchik, I. N. Pan'ko, and V. A. Zazulyak, Fiz.-Khim. Mekh. Mater., No. 1, 98–105 (1977).

    Google Scholar 

  141. R. A. Schmidt and P. C. Paris, Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, ASTM (1973), pp. 79–94.

  142. T. Yokobori and K. Sato, Eng. Fracture Mech.,8, No. 1, 81–88 (1976).

    Google Scholar 

  143. P. C. Paris, R. J. Bucci, E. T. Wessel, W. G. Clark, and T. R. Mager, Stress Analysis and Growth of Cracks,1, ASTM STP 513, ASTM (1972), pp. 141–176.

  144. J. M. Barson, Corrosion Fatigue: Chemistry, Mechanics, and Microstructure, NACE (1973), pp. 424–436.

  145. J. R. Haigh, Eng. Fracture Mech.,7, No. 2, 271–284 (1975).

    Google Scholar 

  146. W. Brown and J. E. Srawley, Fracture Toughness Testing of High-Strength Metallic Materials in Plane Strain [Russian translation], Mir, (1972).

  147. Standard Method of Test for Plane Strain Fracture. Toughness of Metallic Materials, 1975 Annual Book of Standards, ASTM (1975), pp. 561–569.

  148. V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, Fiz.-Khim. Mekh. Mater., No. 2, 10–17 (1976).

    Google Scholar 

  149. V. M. Markochev and E. M. Morozov, Fiz.-Khim. Mekh. Mater., No. 2, 21–23 (1976).

    Google Scholar 

  150. E. M. Morozov and B. A. Drozdovskii, Zavod. Lab., No. 8, 995–1004 (1976).

    Google Scholar 

  151. A. M. Shlyafirner, A. V. Pastoev, and A. G. Bordacheva, Fiz.-Khim. Mekh. Mater., No. 3, 42–47 (1977).

    Google Scholar 

  152. J. R. Dixon and J. S. Stranningen, Fracture 1969: Proc. Second Int. Conf. Fracture, Chapman and Hall, London (1969).

    Google Scholar 

  153. D. S. Thompson and R. E. Zinkham, Eng. Fracture Mech.,7, No. 3, 389–409 (1975).

    Google Scholar 

  154. F. Erdogan and M. Ratwani, Int. J. Fract. Mech.,6, No. 4, 379–392 (1970).

    Google Scholar 

  155. M. P. Wnuk, Eng. Fracture Mech.,5, No. 2, 379–396 (1973).

    Google Scholar 

  156. K. B. Davies and C. E. Feddersen, AIAA Pap., No. 74–368 (1974).

  157. Chew, Trans. ASME, Ser. D,96, Theor. Principles Eng. Calc., No. 4, 21–27 (1974).

    Google Scholar 

  158. V. G. Kudryashov and V. I. Smolentsev, Fracture Toughness in Aluminum Alloys [in Russian], Metallurgiya, (1976).

  159. W. D. Dover, J. Soc. Environ. Eng.,15, No. 1, 3–9 (1976).

    Google Scholar 

  160. A. E. Andreikiv, Fiz.-Khim. Mekh. Mater., No. 6, 27–30 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 13, No. 4, pp. 3–22, July–August, 1977.

In conclusion, it is a pleasant duty to thank my colleagues, engineers G. S. Margolin, I. B. Polutranko, and V. V. Popovich, who carried out the research whose results are shown in Figs. 2, 5, and 3, respectively, and also A. I. Zboromirskii, who carried out all the necessary computer operations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarema, S.Y. Assessment of metal and alloy resistance to cracking. studies of fatigue crack growth and kinetic fatigue fracture diagrams. Mater Sci 13, 351–368 (1978). https://doi.org/10.1007/BF00715249

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00715249

Keywords

Navigation