Skip to main content
Log in

Electric organ polyamines and their effects on the acetylcholine receptor

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The electric organ ofTorpedo nobiliana contained putrescine (PUT), spermidine (SPD), spermine (SPM), and cadaverine (CAD). Traces of acetylated SPD and SPM were occasionaly seen.

  2. 2.

    Upon fractionation of the tissue by differential centrifugation, the polyamines (PA) were found predominantly in the soluble fraction. The postsynaptic membrane fraction, containing a high concentration of acetylcholine receptor (AChR), was proportionally enriched in SPM. The molar ratio of SPM to AChR was approximately two in these membranes.

  3. 3.

    The effect of exogeneous PA on AChR function was studied by two methods: carbamoylcholine (CCh)-dependent86Rb+ influx into receptor-rich membrane vesicles and [α-125I]bungarotoxin (Bgt) binding to the AChR.

  4. 4.

    SPM inhibited both ion influx and the rate of Bgt binding at concentrations above 1 mM, and therefore it appears to act as a competitive antagonist of the AChR.

  5. 5.

    At submicromolar concentrations, and only after preincubation with the receptor-rich membrane, SPM and PUT increased the ion influx by about 20% over control values.

  6. 6.

    Preincubation with 100 nM SPM did not affect the equilibrium binding of iodinated toxin or the rate of toxin binding, and therefore SPM was not uncovering new receptors.

  7. 7.

    By measuring the initial rate of toxin binding after different periods of preincubation with 1µM CCh, the rate of the slow phase of receptor desensitization was determined. This rate was not changed by 100 nM SPM.

  8. 8.

    Although these results suggest that at low concentrations SPM is a positive modulator of the AChR, the precise mechanism of action is not determined yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasu, T., Hirai, K., and Koketsu, K. (1981). Increase of acetylcholine-receptor sensitivity by adenosine triphosphate: A novel action of ATP on ACh-sensitivity.Br. J. Pharm. 74505–507.

    Google Scholar 

  • Akoka, S., and Tellier, C. (1989). Calcium and spermine interaction with phospholipid bilayers: A15N NMR study.Biochimie 71137–144.

    Google Scholar 

  • Alarcon, R. A., Foley, G.E., and Modest, E. J. (1961). Effect of spermine on mammalian cells.Arch. Biochem. Biophys. 94540–541.

    Google Scholar 

  • Anis, N., Sherby, S., Goodnow, R., Jr., Niwa, M., Konno, K., Kallimopoulos, T., Bukownik, R., Nakanishi, K., Usherwood, P., Eldefrawi, A., and Eldefrawi, M. (1990). Structure-activity relationships of philanthotoxin analogs and polyamines on N-methyl-D-aspartate and nicotinic acetylcholine receptors.J. Pharmacol. Exp. Ther. 254764–773.

    Google Scholar 

  • Asotra, S., Mladenov, P. V., and Burke, R. D. (1987). Improved method for benzoyl chloride derivatization of polyamines for high-performance liquid chromatography.J. Chromatogr. 408227–233.

    Google Scholar 

  • Brackley, P., Goodnow, R., Jr., Nakanishi, K., Sudan, H. I., and Usherwood, P. N. R. (1990). Spermine and philantotoxin potentiate excitatory amino acid responses of Xenopus oocytes injected with rat and chick brain RNA.Neurosci. Lett. 11451–56.

    Google Scholar 

  • Bradley, R. J., Sterz, R., and Peper, K. (1984). The effects of alcohols and diols at the nicotinic acetylcholine receptor of the neuromuscular junction.Brain Res. 295101–112.

    Google Scholar 

  • del Castillo, J., Escalona de Motta, G., Eterovic, V. A., and Ferchmin, P. A. (1985) Succinyl derivatives of N-tris(hydroxymethyl) methyl-2-aminoethane sulphonic acid: Their effects on the frog neuromuscular junction.Br. J. Pharm. 84275–288.

    Google Scholar 

  • De Meis, L. (1967). Relaxing effect of spermine and spermidine on intact and glycerol-treated muscle.Am. J. Physiol. 22292–96.

    Google Scholar 

  • Durant, N. N., and Lambert, J. J. (1981). The action of polymixin B at the frog neuromuscular junction.Br. J. Pharm. 7241–47.

    Google Scholar 

  • Eldefrawi, A. T., Miller, E. R., Murphy, D. L., and Eldefrawi, M. E. (1982). [3H]Phencyclidine interactions with the nicotinic acetylcholine receptor channel and its inhibition by psychotropic, antipsychotic, opiate, antidepressant, antibiotic, antiviral, and antiarrhythmic drugs.Mol. Pharm. 2272–81.

    Google Scholar 

  • Eterović, V. A., Escalona de Motta, G., Hann, R. M., Lasalde, J. A., Prieto, J. A., and Ferchmin, P. A. (1989a). Positive modulators of muscle acetylcholine receptor.J. Receptor Res. 9107–125.

    Google Scholar 

  • Eterović, V. A., Hann, R. M., Ferchmin, P. A., Escalona de Motta, G., del Castillo, J., Prieto, J. A., and Lasalde, J. A. (1989b). Positive modulators of acetylcholine receptor: Differences between skeletal muscle and electric organ. InNATO ASI Series, Vol. H32. Molecular Biology of Neuroreceptors and Ion Channels (A. Maelicke, Ed.), Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Eterović, V. A., Li, L., Palma, A., and McNamee, M. G. (1990). Regulation of nicotinic acetylcholine receptor function by adenine nucleotides.Cell. Mol. Neuorbiol. 10423–433.

    Google Scholar 

  • Ferchmin, P. A., and Eterović, V. A. (1987). Role of polyamines in experience-dependent brain plasticity.Pharm. Biochem. Behav. 26341–349.

    Google Scholar 

  • Ferchmin, P.A., and Eterović, V. A. (1990a). Experience affects cortical but not subcortical polyamines.Pharm. Biochem. Behav. 35255–258.

    Google Scholar 

  • Ferchmin, P. A., and Eterovic, V. A. (1990b). Putrescine decreases exploration of a black and white maze.Pharm. Biochem. Behav. 37445–449.

    Google Scholar 

  • Fong, T. M., and McNamee, M. G. (1986). Correlation between acetylcholine receptor function and structural properties of membranes.Biochemistry 25830–840.

    Google Scholar 

  • Foster, A. C., and Wong, E. H. F. (1987). The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-D-aspartate receptor in rat brain.Br. J. Pharm. 91403–409.

    Google Scholar 

  • Harborne, A. J., Turner, A. W., Murphy, R. L. W., and Smith, M. (1987). Action of phospholipase C at the neuromuscular junction in rodent skeletal muscle.Eur. J. Pharm. 143163–170.

    Google Scholar 

  • Kavanaugh, M. P., Tester, B. A. C., and Weber, E. (1989). Interaction of MK-801 with the nicotinic acetylcholine receptor-associated ion channel from electroplax.Eur. J. Pharm. 164397–398.

    Google Scholar 

  • Kiehl, R., Varsányi, M., and Neumann, E. (1987). Phosphorylation of phosphatidylinositol associated with the nicotinic acetylcholine receptor of Torpedo californica.Biochem. Biophys. Res. Comm. 1471251–1258.

    Google Scholar 

  • Kushner, L., Lerma, J., Zukin, R. S., and Bennett, M. V. L. (1988). Coexpression of N-methyl-D-aspartate and phencyclidine receptors in Xenopus oocytes injected with rat brain mRNA.Proc. Natl. Acad. Sci. USA 853250–3254.

    Google Scholar 

  • Lindstrom, J., Anholt, R., Einarson, B., Engle, A., Osame, M., and Montal, M. (1980). Purification of acetylcholine receptors, reconstitution into lipid vesicles, and study of agonist-induced cation channel regulation.J. Biol. Chem. 2558340–8350.

    Google Scholar 

  • Löser, C., Wunderlich, U., and Fölsch, U. R. (1988). Reversed-phase liquid chromatographic separation and simultaneous fluorimetric detection of polyamines and their monoacetylated derivatives in human and animal urine, serum and tissue samples; An improved, rapid and sensitive method for routine application.J. Chromatogr. 430249–262.

    Google Scholar 

  • Lowry, O. H., Rosenborough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurements with the Folin phenol reagent.J. Biol. Chem. 193265–275.

    Google Scholar 

  • Missíaen, L., Wuytack, F., Raeymaekers, L., De Smedt, H., and Casteels, R. (1989). Polyamines and neomycin inhibit the purified plasma-membrane Ca2+ pump by interacting with associated polyphosphoinositides.Biochem. J. 2611055–1058.

    Google Scholar 

  • Oliveira, L., Madsen, B. W., Kapai, N., Sherby, S. M., Swanson, K. L., Eldefrawi, M. E., and Albuquerque, E. X. (1987). Interaction of narcotic antagonist naltrexone with nicotinic acetylcholine receptor.Eur. J. Pharm. 140331–342.

    Google Scholar 

  • Pegg, A. E., and McCann, P. P. (1988). Polyamine metabolism and function in mammalian cells and protozoans.ISI Atlas of Science, pp. 11-18.

  • Piek, T., and Hue, B. (1989). Philanthotoxins, a new class of neuroactive polyamines, block nicotinic transmission in the insect CNS.Comp. Biochem. Physiol. 93C403–406.

    Google Scholar 

  • Quast, U., Schimerlik, M., Lee, T., Witzemann, V., Blanchard, S., and Raftery, M. A. (1978). Ligand-induced conformational changes in Torpedo californica membrane-bound acetylcholine receptor.Biochemistry 172405–2414.

    Google Scholar 

  • Ransom, R. W., and Stec, N. L. (1988). Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine and polyamines.J. Neurochem. 51830–836.

    Google Scholar 

  • Rosental, S. M., and Tabor, C. W. (1956). The pharmacology of spermine and spermidine. Distribution and excretion.J. Pharmacol. Exp. Ther. 116131–138.

    Google Scholar 

  • Rozental, R., Scoble, G. T., Albuquerque, E. X., Idriss, M., Sherby, S., Sattelle, D. B., Nakanishi, K., Konno, K., Eldefrawi, A. T., and Eldefrawi, M. E. (1989).J. Pharmacol. Exp. Ther. 249123–130.

    Google Scholar 

  • Saji, Y., Escalona de Motta, G., and del Castillo, J. (1975). Depolarization and potentiation of responses to acetylcholine elicited by ATP on frog muscle.Life Sci. 16945–954.

    Google Scholar 

  • Schmidt, J., and Raftery, M. A. (1973). A simple assay for the study of solubilized acetylcholine receptors.Anal. Biochem. 52349–354.

    Google Scholar 

  • Schuber, F. (1989). Influence of polyamines on membrane functions.Biochem. J. 2601–10.

    Google Scholar 

  • Spronsen, T. S., and Woodruff, G. N. (1990). Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons.Eur. J. Pharm. 179477–478.

    Google Scholar 

  • Zar, J. H. (1974).Biostatistical Analysis, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczawinska, K., Ferchmin, P.A., Hann, R.M. et al. Electric organ polyamines and their effects on the acetylcholine receptor. Cell Mol Neurobiol 12, 95–106 (1992). https://doi.org/10.1007/BF00713364

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713364

Key words

Navigation