Skip to main content
Log in

High temperature structural investigation of Na2O·0.5Fe2O3·3SiO2 and Na2O·FeO·3SiO2 melts and glasses

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The structure of glasses and melts of Na2O· 0.5Fe2O3·3SiO2 and Na2O·FeO·3SiO2 compositions have been measured using high temperature Raman spectroscopy. For the oxidized sample it has been demonstrated that there is a close structural relationship between melt and glass. No coordination changes of Fe3+ with temperature and no new anionic species have been observed in the oxidized melt. The Raman spectra of the reduced sample clearly show a decrease in the degree of polymerization, as determined by the observation of the polarization character of the spectra and the details of the change of the Raman intensities during heating in hydrogen. Mössbauer spectra suggest that Fe3+ is tetrahedrally coordinated in the oxidized glass and part of the Fe2+ is tetrahedrally coordinated in the reduced glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthauer G, Annersten H, Hafner SS (1977) The Mössbauer spectrum of57Fe in titanium-bearing andradites. Phys Chem Mineral 1:339–413

    Google Scholar 

  • Annersten H, Halenius U (1976) Ion distribution in pink muscovite: a discussion. Am Mineral 61:1045–1050

    Google Scholar 

  • Bell PM, Mao HK, Weeks RA (1976) Optical spectra and electron paramagnetic resonance of lunar and synthetic glasses: a study of the effects of controlled atmosphere, composition, and temperature. Proc Lunar Planet Sci Conf 7:2543–2559

    Google Scholar 

  • Boon JA, Fyfe WS (1972) The coordination number of ferrous ions in silicate glasses. Chem Geol 10:287–298

    Google Scholar 

  • Brandriss ME, Stebbins JF (1988) Effects of temperature on the structures of silicate liquids: Si-29 NMR results. Geochim Cosmochim Acta 52:2659–2669

    Google Scholar 

  • Bunker BC, Haaland DM, Ward KJ, Michalske TA (1989) Infrared spectra of edge-shared silicate tetrahedra. Surf Sci 210:406–428

    Google Scholar 

  • Burns RD (1970) Mineralogical applications of crystal field theory. Cambridge University Press, London

    Google Scholar 

  • Calas G, Petiau J (1983) Short-range order around Fe(II) and Mn(II) in oxide glasses determined by X-ray absorption spectroscopy in relation with other spectroscopic and magnetic properties. In: Gaskell PH, Parker JM, Davis EA (eds) The structure of non-crystalline materials 1982. Taylor and Francis, New York, pp 18–28

    Google Scholar 

  • Clark MG, Bancroft GM, Stone AJ (1967) Mössbauer spectrum of Fe2+ in a square-planar environment. J Chem Phys 47:4250–4261

    Google Scholar 

  • Cooney TF, Sharma SK (1990) Structure of glasses in the systems Mg2SiO4−Fe2SiO4, Mn2SiO4−Fe2SiO4, Mg2SiO4−CaMgSiO4, and Mn2SiO4−CaMnSiO4. J Non-Cryst Solids 122:10–32

    Google Scholar 

  • DeJong BHWS, Keefer KD, Brown GE, Taylor CM (1981) Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions-III. Local silicon environments and internal nucleation in silicate glasses. Geochim Cosmochim Acta 45:1291–1308

    Google Scholar 

  • Doremus RH (1973) Glass Science. John Wiley, New York

    Google Scholar 

  • Dyar MD (1984) Precision and interlaboratory reproducibility of measurements of the Mössbauer effect in minerals. Am Mineral 69:1127–1144

    Google Scholar 

  • Dyar MD (1985) A review of Mössbauer data on inorganic glasses: the effects of composition on iron valency and coordination. Am Mineral 70:304–316

    Google Scholar 

  • Dyar MD, Burns RG (1981) Coordination chemistry of iron in glasses contributing to remote-sensed spectra of the moon. Proc Lunar Planet Sci Conf 12B:695–702

    Google Scholar 

  • Edwards RJ, Paul A, Douglas RW (1972) Spectroscopy and oxidation-reduction in MoP2O5 glasses. Phys Chem Glasses 13:137–143

    Google Scholar 

  • Farnan I, Stebbins JF (1990) High-temperature29Si NMR investigation of solid and molten silicates. J Am Chem Soc 112:32–39

    Google Scholar 

  • Fleet ME, Herzberg CT, Henderson GS, Crozier ED, Osborne MD, Scarfe CM (1984) Coordination of Fe, Ga and Ge in high pressure glasses by Mössbauer, Raman and X-ray absorption spectroscopy, and geological implications. Geochim Cosmochim Acta 48:1455–1466

    Google Scholar 

  • Fox KE, Furukawa T, White WB (1982) Transition metals in silicate melts. Part 2. Iron in sodium silicate glasses. Phys Chem Glasses 23:169–178

    Google Scholar 

  • Furukawa T, Fox KE, White WB (1981) Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses. J Chem Phys 75:3226–3237

    Google Scholar 

  • Galeener FL, Mikkelson JC Jr (1981) Vibrational dynamics in18O-substituted vitreous SiO2. Phys Rev B 23:5527–5530

    Google Scholar 

  • Goldman DS, Berg JT (1980) Spectral study of ferrous iron in Ca−Al-borosilicate glass at room and melt temperature. J Non-Cryst Solids 38 & 39:183–188

    Google Scholar 

  • Hafner SS, Huckenholz HG (1971) Mössbauer spectrum of synthetic ferridiopside. Nature (London) Phys Sci 23:255–261

    Google Scholar 

  • Hawthorne FC (1988) Mössbauer spectroscopy. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology (Reviews in Mineralogy vol 18). Mineralogical Society of America, Washington DC, pp 255–340

    Google Scholar 

  • Hirao K, Soga N, Kunugi M (1979) Mössbauer and ESR analyses of the distribution of Fe3+ in leucite type Fe silicate glasses and crystals. J Am Ceram Soc 62:109–110

    Google Scholar 

  • Kiline A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferricferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol 83:136–140

    Google Scholar 

  • Lange RA, Carmichael ISE (1989) Ferric-ferrous equilibria in Na2O−FeO−Fe2O3−SiO2 melts: effect of analytical techniques on derived partial volumes. Geochim Cosmochim Acta 53:2195–2204

    Google Scholar 

  • Liu SB, Pines A, Brandriss M, Stebbins JF (1987) Relaxation mechanisms and effects of motion in albite (NaAlSi3O8) liquid and glass: a high temperature NMR study. Phys Chem Mineral 15:155–162

    Google Scholar 

  • Liu SB, Stebbins JF, Schneider E, Pines A (1988) Diffusive motion in alkali silicate melts: an NMR study at high temperature. Geochim Cosmochim Acta 52:527–538

    Google Scholar 

  • Loeffler BM, Burns RG, Tossel JA, Vaughan DJ, Johnson KH (1974) Charge transfer in lunar materials: interpretation of ultraviolet-visible spectral properties of the moon. Proc 5th Lunar Conf, Geochim Cosmochim Acta (Suppl) 3:3007–3016

    Google Scholar 

  • Mao HK, Virgo D, Bell PM (1973) Analytical study of the orange soil returned by the Apollo 17 astronauts. Carnegie Inst Washington Yearb 72:631–638

    Google Scholar 

  • Matson DW, Sharma SK (1985) Structures of sodium aluminoand gallosilicate glasses and their germanium analogs. Geochim Cosmochim Acta 49:1913–1924

    Google Scholar 

  • Matson DW, Sharma SK, Philpotts JA (1983) The structure of high-silica alkali-silicate glasses. A Raman spectroscopic investigation. J Non-Cryst Solids 58:323–352

    Google Scholar 

  • McMillan P (1984) Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am Mineral 69:622–644

    Google Scholar 

  • McMillan PF, Wolf GH, Poe BT (1992) Vibrational spectroscopy of silicate liquids and glasses. Chem Geol 96:351–366

    Google Scholar 

  • Murdoch JB, Stebbins JF, Carmichael ISE (1985) High-resolution29Si NMR study of silicate and aluminosilicate glasses: the effect of network-modifying cations. Am Mineral 70:332–343

    Google Scholar 

  • Mysen BO (1990) Role of Al in depolymerized, peralkaline aluminosilicate melts in the systems Li2O−Al2O3−SiO2, Na2O−Al2O3−SiO2, and K2O−Al2O3−SiO2. Am Mineral 75:120–143

    Google Scholar 

  • Mysen BO, Frantz JD (1992) Raman spectroscopy of silicate melts at magmatic temperatures: Na2O−SiO2, K2O−SiO2 and Li2O−SiO2, binary compositions in the temperature range 25–1475°C. Chem Geol 96:321–332

    Google Scholar 

  • Mysen BO, Virgo D (1978) Influence of pressure, temperature and bulk composition on melt structures in the system NaAlSi2O6−NaFe3+Si2O6. Am J Sci 278:1307–1322

    Google Scholar 

  • Mysen BO, Seifert F, Virgo D (1980a) Structure and redox equilibria of iron-bearing silicate melts. Am Mineral 65:867–884

    Google Scholar 

  • Mysen BO, Virgo D, Scarfe CM (1980b) Relations between the anionic structure and viscosity in silicate melts—a Raman spectroscopic study. Am Mineral 65:690–710

    Google Scholar 

  • Mysen BO, Virgo D, Seifert FA (1982) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev Geophys Space Phys 20:353–383

    Google Scholar 

  • Mysen BO, Virgo D, Seifert FA (1984) Redox equilibria of iron in alkaline earth silicate melts: relationships between melt structure, oxygen fugacity, temperature, and properties of iron-bearing silicate liquids. Am Mineral 69:834–847

    Google Scholar 

  • Mysen BO, Virgo D, Neumann ER, Seifert FA (1985) Redox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO−MgO−Al2O3−SiO2−Fe: relationships between redox equilibria, melt structure and liquidus phase equilibria. Am Mineral 70:317–331

    Google Scholar 

  • Nolet DA (1980) Optical absorption and Mössbauer spectra of Fe−Ti silicate glasses. J Non-Cryst Solids 37:99–110

    Google Scholar 

  • Nolet DA, Burns RG, Flamm SL, Besancon JR (1979) Spectra of Fe−Ti silicate glasses: implications for remote sensing of planetary surfaces. Proceeding, 10th Lunar Planet Science Conf 1775–1786

  • Ruby SL (1973) Why Misfit when you already have χ2? In: Gruverman IJ, Seidel CW (eds) Mössbauer Effect Methodology 8. Plenum, New York, pp 263–276

    Google Scholar 

  • Sack RO, Carmichael ISE, Rivers M, Ghiorso MS (1980) Ferricferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75:369–376

    Google Scholar 

  • Schneider E, Stebbins JF, Pines A (1987) Speciation and local structure in alkali and alkaline earth silicate glasses: constraints from Si-29 NMR spectroscopy. J Non-Cryst Solids 89:371–383

    Google Scholar 

  • Seifert FA, Mysen BO, Virgo D (1981) Structural similarity of glasses and melts relevant to petrological processes. Geochim Cosmochim Acta 45:1879–1884

    Google Scholar 

  • Sharma SK, Yoder HS Jr (1979) Structural study of åkermanite, diopside and sodium melilite glasses by Raman spectroscopy. Carnegie Inst Washington Yearb 78:526–532

    Google Scholar 

  • Sharma SK, Matson DW, Philipotts JA, Roush TL (1984) Raman study of the structure of glasses along the join SiO2−GeO2. J Non-Cryst Solids 68:99–114

    Google Scholar 

  • Sharma SK, Virgo D, Mysen BO (1978) Structure of glasses and melts of Na2O−xSiO2 (x=1, 2, 3) compositions from Raman spectroscopy. Carnegie Inst Washington Yearb 77:649–652

    Google Scholar 

  • Sharma SK, Virgo D, Kushiro I (1979) Relationship between density, viscosity and structure of GeO2 melts at low and high pressure. J Non-Cryst Solids 33:235–248

    Google Scholar 

  • Stebbins JF (1988) Effects of temperature and composition on silicate glass structure and dynamics. J Non-Cryst Solids 106:359–369

    Google Scholar 

  • Stone AJ, Augard HJ, Fenger J (1971) MOSSPEC, a program for resolving Mössbauer spectra. Riso, Roskilde, Denmark, Danish Atomic Energy Commission. RISO-M-1348

    Google Scholar 

  • Stone AJ, Parkin KA, Dyar MD (1984) Stone: a curve-fitting program for Mössbauer spectra. DEC Users' Society Publication, 11–720, Marlboro, MA, USA

    Google Scholar 

  • Sverdlov LM, Kovner MA, Krainov EP (1974) Vibrational spectra of polyatomic molecules. Israel program for scientific translations Ltd., Halsted press, New York

    Google Scholar 

  • Sweet JR, White WB (1969) A study of sodium silicate glasses and liquids by infrared spectroscopy. Phys Chem Glasses 10:246–251

    Google Scholar 

  • Thorpe MF, Galeener FL (1980) Central force model for the high frequency vibrational bands of glasses. J Non-Cryst Solids 35/ 36:1197–1202

    Google Scholar 

  • Virgo D, Mysen BO (1985) The structural state of iron in oxidized vs reduced glasses at 1 atm: a57Fe Mössbauer study. Phys Chem Mineral 12:65–76

    Google Scholar 

  • Virgo D, Mysen BO, Kushiro I (1980) Anionic constitution of silicate melts quenched at 1 atm from Raman spectroscopy: implication for the structure of igneous melts. Science 208:1371–1373

    Google Scholar 

  • Waseda Y, Toguri JM (1977a) Temperature dependence of the structure of molten silicates M2O−2 SiO2 and M2O−SiO2 (M=Li, Na and K). Trans Iron Steel Inst Japan 17:601–603

    Google Scholar 

  • Waseda Y, Toguri JM (1977b) The structure of molten binary silicate systems CaO−SiO2 and MgO−SiO2. Metall Trans B8: 563–568

    Google Scholar 

  • Waseda Y, Toguri JM (1978) The structure of the molten FeO−SiO2 system. Metall Trans B9:595–601

    Google Scholar 

  • Waychunas GA, Brown GE Jr, Ponader CW, Jackson WE (1988) Evidence from X-ray absorption for network-forming Fe2+ in molten alkali silicates. Nature (London) 332:251–253

    Google Scholar 

  • Waychunas GA, Rossman GR (1983) Spectroscopic standard for tetrahedrally coordinated ferric iron: γLiAlO2: Fe3+. Phys Chem Mineral 9:212–215

    Google Scholar 

  • Xue X, Stebbins JF, Kanzaki M, McMillan PF, Poe B (1991) Pressure-induced silicon coordination and tetrahedral structural changes in alkali oxide-silica melts up to 12 GPa: NMR, Raman, and infrared spectroscopy. Am Mineral 76:8–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Cooney, T.F. & Sharma, S.K. High temperature structural investigation of Na2O·0.5Fe2O3·3SiO2 and Na2O·FeO·3SiO2 melts and glasses. Contr. Mineral. and Petrol. 115, 112–122 (1993). https://doi.org/10.1007/BF00712983

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712983

Keywords

Navigation