Skip to main content
Log in

Monte Carlo simulations of very low pressure chemical vapor deposition

  • Perspective
  • Published:
Journal of Computer-Aided Materials Design

Summary

Simulation strategies for chemical vapor deposition (CVD) of thin solid films are presented, with emphasis on direct simulation Monte Carlo methods for analyzing and predicting physical phenomena occurring at low pressures and in micron-sized substrate features. The Monte Carlo approach is placed in perspective, relative to standard continuum mechanics-based strategies for modeling of CVD systems. Design issues that may be addressed through the developed methods are exemplified with computations for a new, technologically important CVD process for epitaxy of Si and SixGe1-x alloys. Specifically, radiative heat transfer, rarefied gas-flow characteristics, species separation caused by pressure and thermal diffusion, growth-rate uniformity vs. surface reactivity, and deposition in microscopic features are addressed as parts of the overall CVD reactor-design approach. Process implications of rarefied transport effects unique to very low pressure CVD conditions are described. A new profile evolution technique is also introduced which predicts film topology, as well as the microstructure of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jensen, K.F., In Hitchman, M.L. and Jensen, K.F. (Eds.) Chemical Vapor Deposition. Principles and Applications, Academic Press, London 1993, pp. 31–90.

    Google Scholar 

  2. McCrary, V.R. and Donnelly, V.M., In Hitchman, M.L. and Jensen, K.F. (Eds.) Chemical Vapor Deposition. Principles and Applications, Academic Press, London, 1993, pp. 437–514.

    Google Scholar 

  3. Hess, D.W. and Graves, D.B., In Hitchman, M.L. and Jensen, K.F. (Eds.) Chemical Vapor Deposition. Principles and Applications, Academic Press, London, 1993, pp. 385–431.

    Google Scholar 

  4. Kern, W. and Jensen, K.F., In Vossen, J.L. and Kern, W. (Eds.) Thin Film Processes II, Academic Press, Boston 1991, pp. 283–368.

    Google Scholar 

  5. Stringfellow, G.B., Organometallic Vapor Phase Epitaxy, Academic Press, San Diego, 1989.

    Google Scholar 

  6. Jones, A.C., J. Crystal Growth, 129 (1993) 728.

    Google Scholar 

  7. Moffat, H.K., Kucch, T.F., Jensen, K.F. and Wang, P.J., J. Crystal Growth, 93 (1988) 594.

    Google Scholar 

  8. Masi, M., Simka, H., Jensen, K.F., Kuech, T.F. and Potemski, R., J. Crystal Growth, 124 (1992) 483.

    Google Scholar 

  9. Hirschfelder, J., Curtiss, C. and Bird, R.B., Molecular Theory of Gases and Liquids, Wiley, New York, 1954.

    Google Scholar 

  10. Bird, G., In Muntz, E.P., Weaver, D. and Campbell, D.H. (Eds.) Proceedings of the 16th International Symposium on Rarefied Gas Dynamics, American Institute of Aeronautics and Astronautics, Washington, DC, 1988, pp. 211–226.

    Google Scholar 

  11. Bird, G., Molecular Gas Dynamics, Clarendon Press, Oxford, 1976.

    Google Scholar 

  12. Bird, G., In Fischer, S.S. (Ed.) Proceedings of the 12th International Symposium on Rarefied Gas Dynamics, American Institute of Aeronautics and Astronautics, Washington, DC, 1980, pp. 239–255.

    Google Scholar 

  13. Bird, G., Phys. Fluids, 26 (1983) 3222.

    Google Scholar 

  14. Ikegawa, M. and Kobayashi, J., J. Electrochem. Soc., 136 (1989) 2982.

    Google Scholar 

  15. Meyerson, B.S., Appl. Phys. Lett., 48 (1986) 797.

    Google Scholar 

  16. Patton, G.L., Comfort, J.H., Meyerson, B.S., Crabbe, E.F., Scilla, G.J., DeFresart, E., Stork, J.M.C., Sun, J.Y.-C., Harame, D.L. and Burghartz, J., Electron. Dev. Lett., 11 (1990) 171.

    Google Scholar 

  17. Hitchman, M.L. and Jensen, K.F., In Hitchman, M.L. and Jensen, K.F. (Eds.) Chemical Vapor Deposition. Principles and Applications, Academic Press, New York, 1993, pp. 159–218.

    Google Scholar 

  18. Jensen, K.F. and Graves, D.B., J. Electrochem. Soc., 130 (1983) 1950.

    Google Scholar 

  19. Middleman, S. and Yeckel, A., J. Electrochem. Soc., 133 (1986) 1951.

    Google Scholar 

  20. Hopfmann, C., Werner, C. and Ulacia, J., Appl. Surf. Sci., 52 (1991) 169.

    Google Scholar 

  21. Badgwell, T.A., Edgar, T.F., Trachtenberg, I., Yette, G., Elliott, J.K. and Anderson, R.L., IEEE Trans. Semi. Manu., 6 (1993) 65.

    Google Scholar 

  22. Houf, W., Grcar, J. and Breiland, W., In Jensen, K.F. and Cullen, G.W. (Eds.) Proceedings of the 12th International Conference on CVD, The Electrochemical Society, Pennington, New Jersey, 1993, pp. 85–93.

    Google Scholar 

  23. Howell, J., In Hartnett, J. and Irvine, T. (Eds.) Advances in Heat Transfer, Vol. 5, Academic Press, New York, 1968, pp. 2–50.

    Google Scholar 

  24. Siegel, R. and Howell, J., Thermal Radiation Heat Transfer, 3rd Ed., McGraw-Hill, New York, 1992.

    Google Scholar 

  25. Haji-Skeikh, A. and Sparrow, E.M., Prog. Heat Mass Trans., 2 (1969) 1.

    Google Scholar 

  26. Sala, A., Radiant Properties of Materials, Elsevier, New York, 1986.

    Google Scholar 

  27. Hsieh, C. and Su, K., Solar Energy, 22 (1979) 37.

    Google Scholar 

  28. Coronell, D., Ph.D. Thesis, Massachusetts Institute of Technology, 1993.

  29. Gates, S.M., Greenlief, C.M., Kulkarni, S.K. and Sawin, H.H., J. Vac. Sci. Tech., A8 (1990) 2965.

    Google Scholar 

  30. M. Liehr, personal communication.

  31. Hill Jr., C.G., Introduction to Chemical Engineering Kinetics and Reactor Design, Wiley, New York, 1977.

    Google Scholar 

  32. Meyerson, B.S., Uram, K. and LeGoues, F., Appl. Phys. Lett., 25 (1988) 2555.

    Google Scholar 

  33. Greve, D. and Racanelli, M., J. Vac. Sci. Tech., B3 (1990) 511.

    Google Scholar 

  34. Bird, G., AIAA Paper No. 88-2732,1988.

  35. Nelson, D. and Doo, Y., In Muntz, E.P., Weaver, D. and Campbell, D.H. (Eds.) Proceedings of the 16th International Symposium on Rarefied Gas Dynamics, American Institute of Aeronautics and Astronautics, Washington, DC, 1988, pp. 340–349.

    Google Scholar 

  36. Hasper, A., Holleman, J., Middelhock, J., Kleijn, C. and Hoogendoorn, C., J. Electrochem. Soc., 138 (1991) 1728.

    Google Scholar 

  37. Cale, T. and Raupp, G., J. Vac. Sci. Tech., B8 (1990) 1242.

    Google Scholar 

  38. Wulu, H., Saraswat, K. and McVittie, J., J. Electrochem. Soc., 138 (1991) 1831.

    Google Scholar 

  39. Allen, M. and Tildesley, D., Computer Simulation of Liquids, Oxford University Press, New York, 1987.

    Google Scholar 

  40. Weeks, J. and Gilmer, G., In Progogine, I. and Rice, S. (Eds.) Advances in Chemical Physics, Vol. XL, Wiley, New York, 1978.

    Google Scholar 

  41. Cheng, L., McVittie, J. and Saraswat, K., Appl. Phys. Lett. 58 (1991) 2147.

    Google Scholar 

  42. Tsai, C., Knights, J., Chang, G. and Wacker, B., J. Appl. Phys., 59 (1986) 2998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coronell, D.G., Jensen, K.F. Monte Carlo simulations of very low pressure chemical vapor deposition. J Computer-Aided Mater Des 1, 3–26 (1993). https://doi.org/10.1007/BF00712813

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712813

Key words

Navigation