Skip to main content
Log in

Cholinesterases during development of the avian nervous system

  • Review
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Long before onset of synaptogenesis in the chicken neural tube, the closely related enzymes butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are expressed in a mutually exclusive manner. Accordingly, neuroblasts on the ventricular side of the neural tube transiently express BChE before they abruptly accumulate AChE while approaching the outer brain surface.

  2. 2.

    By exploiting AChE as a sensitive and early histochemical differentiation marker, we have demonstrated complex polycentric waves of differentiation spreading upon the cranial part of the chicken neural tube but a smooth rostrocaudal wave along the spinal cord. Shortly after expression of AChE, these cells extend long projecting neurites. In particular, segmented spinal motor axons originate from AChE-positive motoneurones; they navigate through a BChEactive zone within the rostral half of the sclerotomes before contacting BChE/AChE-positive myotome cells. At synaptogenetic stages, cholinesterases additionally are detectable in neurofibrillar laminae foreshadowing the establishment of cholinergic synapses.

  3. 3.

    In order to elucidate the functional significance of cholinesterases at early stages, we have investigated specific cholinesterase molecules and their mechanism of actionin vivo andin vitro. A developmental shift from the low molecular weight forms to the tetramers of both enzymes has been determined.In vitro, the addition of a selective BChE inhibitor leads to a reduction of AChE gene expression. Thus,in vivo andin vitro data suggest roles of cholinesterases in the regulation of cell proliferation and neurite growth.

  4. 4.

    Future research has to show whether neurogenetic functioning of cholinesterases can help to understand their reported alterations in neural tube defects, mental retardations, dementias and in some tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alles, G. A., and Hawes, R. C. (1940). Cholinesterases in the blood of man.J. Biol. Chem. 133375–390.

    Google Scholar 

  • Allemand, P., Bon, S., Massoulie, J., and Vigny, M. (1981). The quaternary structure of chicken acetylcholinesterase and butyrylcholinesterase; effect of collagenase and trypsin.J. Neurochem. 36860–867.

    Google Scholar 

  • Arendt, T., Bigl, V., Walther, F., and Sonntag, M. (1984). Decreased ratio of CSF acetylcholinesterase to butyrylcholinesterase activity in Alzheimer's disease (letter).Lancet 1173.

    Google Scholar 

  • Atack, J. R., Perry, E. K., Perry, R. H., Wilson, I. D., Bober, M. J., Blessed, G., and Tomlinson, B. E. (1985). Blood acetyl- and butyrylcholinesterases in senile dementia of Alzheimer type.J. Neurol. Sci. 701–12.

    Google Scholar 

  • Atack, J. R., Perry, E. K., Bonham, J. R., Candy, J. M., and Perry, R. H. (1986). Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system.J. Neurochem. 47263–277.

    Google Scholar 

  • Balasubramanian, A. S. (1984). Have cholinesterases more than one function.Trends Neurosci. 7467–468.

    Google Scholar 

  • Baughman, R. W., and Bader, C. R. (1977). Biochemical characterization and cellular localization of the cholinergic system in the chicken retina.Brain Res. 138469–485.

    Google Scholar 

  • Bonham, J. R., and Atack, J. R. (1983). A neural tube defect specific form of acetylcholinesterase in amniotic fluid.Clin. Chim. Acta 135233–238.

    Google Scholar 

  • Bronner-Fraser, M. (1986). Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1.Dev. Biol. 11544–55.

    Google Scholar 

  • Buznikov, G. A. (1971). The role of nervous system mediators in individual development.Ontogenez 25–13.

    Google Scholar 

  • Buznikov, G. A. (1989).Neurotransmitters in Embryogenesis. Vol. 1,Sov. Sci. Rev., Suppl. Ser. Sect. F. Physiology and General Biology Reviews, Harwood Academic.

  • Buznikov, G. A., Chudakova, I. W., and Zwezdina, N. D. (1964).J. Embryol. Exp. Morphol. 12563.

    Google Scholar 

  • Cantino, D., and Daneo, L. S. (1972). Synaptic junctions in the developing chick optic tectum.Experientia 2985–87.

    Google Scholar 

  • Chang, S., Rathjen, F. G., and Raper, J. A. (1987). Extension of neurites on axons is impaired by antibodies against specific neural cell surface glycoproteins.J. Cell Biol. 104355–362.

    Google Scholar 

  • Chatonnet, A., and Lockridge, O. (1989). Comparison of butyrylcholinesterase and acetylcholinesterase.Biochem. J. 260625–634.

    Google Scholar 

  • Chiquet, M. (1989). Tenascin/J1/Cytotactin: The potential function of hexabrachion proteins in neural development.Dev. Neurosci. 11266–275.

    Google Scholar 

  • Chiquet-Ehrismann, R., Mackie, E. L., Pearson, C. A., and Sakakura, T. (1986). Tenascin: An extracellular matrix protein involved in tissue interaction during fetal development and oncogenesis.Cell 471341–139.

    Google Scholar 

  • Cochard, P., and Coltey, P. (1983). Cholinergic traits in the neural crest: Acetylcholinesterase in crest cells of the chick embryo.Dev. Biol. 98221–238.

    Google Scholar 

  • Couraud, J. Y., and DiGiamberardino, L. (1980). Axonal transport of the molecular forms of acetylcholinesterase in chick sciatic nerve.J. Neurochem. 351035–1066.

    Google Scholar 

  • Dames, W., Joo, F., Feher, O., Toldi, J., and Wolff, J. R. (1985). g-Aminobutyric acid enables synaptogenesis in the intact superior cervical ganglion of the adult rat.Neurosci. Lett. 54159–164.

    Google Scholar 

  • Davis, R., and Koelle, G. B. (1978). Electron microscope localization of acetylcholinesterase and butyrylcholinesterase in the superior cervical ganglion of the cat. I. Normal ganglion.J. Cell Biol. 78785–809.

    Google Scholar 

  • Dodd, J., Morton, S. B., Karagogeos, D., Yamamoto, M., and Jessell, T. M. (1988). Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons.Neuron 1105–116.

    Google Scholar 

  • Drews, U. (1975). Cholinesterase in embryonic development.Progr. Histochem. Cytochem. 71–53.

    Google Scholar 

  • Drews, U., and Drews, U. (1973). Cholinesterase in der Extremitätenentwicklung des Hühnchens. II. Fermentaktivität und Bewegungsverhalten der präsumptiven Knorpelzellen in vitro.Wilhelm Roux Arch. Dev. Biol. 173208–227.

    Google Scholar 

  • Dütting, D., Gierer, A., and Hansmann, G. (1983). Self-renewal of stem cells and differentiation of nerve cells in the developing chick retina.Develop Brain Res. 1021–32.

    Google Scholar 

  • Filogamo, G., and Marchisio, P. C. (1971). Acetylcholine system and neuronal development.Neurosci. Res. 429–64.

    Google Scholar 

  • Fitzpatrick-McElligott, S., and Stent, G. S. (1981). Appearance and localization of acetylcholinesterase in embryos of the leechHelobdella triserialis.J. Neurosc. 1901–907.

    Google Scholar 

  • Fluck, R. A., Wynshaw-Boris, A. J., and Schneider, L. M. (1980). Cholinergic molecules modify the in vitro behavior of cells from early embryos of the medaka Oryzias Latipes, a teleost fish.Comp. Biochem. Physiol. 67C29–34.

    Google Scholar 

  • Friede, R. L. (1967). A comparative histochemical mapping of the distribution of butyryl cholinesterase in the brains of four species of mammals including man.Acta Anat. 66161–177.

    Google Scholar 

  • Glees, P., and Sheppard, B. L. (1964). Electron microscopical studies of the synapse in the developing chick spinal chord.Z. Zellf. Mikr. Anat. 62356–362.

    Google Scholar 

  • Goedde, H. W., Doenicke, A., and Altland, K. (1967).Pseudocholinesterasen. Pharmakogenetik, Biochemie, Klinik, Springer, Berlin.

    Google Scholar 

  • Graybiel, A. M., and Ragsdale, C. W. (1982). Pseudocholinesterase staining in the primary visual pathway of the macaque monkey.Nature (London)299439–442.

    Google Scholar 

  • Greenfield, S. A. (1984). Acetylcholinesterase may have novel functions in the brain.Trends Neurosci. 7364–368.

    Google Scholar 

  • Grumet, M., Hoffman, S., Crossin, K. L., and Edelman, G. M. (1985). Cytotactin, an extracellular matrix protein of neural and non-neural tissues that mediates glia-neuron interaction.Proc. Natl. Acad. Sci. USA 828075–8079.

    Google Scholar 

  • Gustafson, T., and Toneby, M. (1970). On the role of serotonin and acetylcholine in sea urchin morphogenesis.Exp. Cell Res. 62102–117.

    Google Scholar 

  • Hamburger, V., and Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo.J. Morphol. 8849–92.

    Google Scholar 

  • Hanneman, E., Trevarrow, B., Metcalfe, W. K., Kimmel, C. B., and Westerfield, M. (1988). Segmental pattern of development of the hindbrain and spinal cord of the zebrafish embryo.Development 10349–58.

    Google Scholar 

  • Haydon, P. G., McCobb, D. P., and Kater, S. B. (1984). Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons.Science 226561–564.

    Google Scholar 

  • Hengstenberg, R., Bülthoff, H., and Hengstenberg, B. (1983). Three-dimensional reconstructions and stereoscopic display of neurons in the fly visual system. InFunctional Neuroanatomy (N. J. Strausfeld, Ed.), Springer-Verlag, Berlin, pp. 183–205.

    Google Scholar 

  • Hoffman, S., Crossin, K. L., and Edelman, G. M. (1988). Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules.J. Cell Biol. 106519–532.

    Google Scholar 

  • Illing, R. B., and Graybiel, A. M. (1985). Convergence of afferents from frontal cortex and substantia nigra onto acetylcholinesterase-rich patches of the cats superior colliculus.Neuroscience 14455–482.

    Google Scholar 

  • Ishii, Y. (1975). The histochemical studies of cholinesterase in the central nervous system. II. Histochemical alteration of cholinesterase of the brain of rats from late fetal life to adults.Arch. Histol. Okoyama 12613–637.

    Google Scholar 

  • Jacobson, M. (1978). InDevelopmental Neurobiology, 2nd ed., Plenum Press, New York.

    Google Scholar 

  • Jedrzejczyk, J., Silman, I., Lai, J., and Barnard, E. A. (1984). Molecular forms of acetylcholinesterase in synaptic and extrasynaptic regions of avian tonic muscle.Neurosci. Lett. 46283–289.

    Google Scholar 

  • Jirikowski, G., Reisert, I., and Pilgrim, C. (1984). Angiotensin II promotes development of Neurophysin neurons in dissociated culture.Dev. Brain Res. 19179–183.

    Google Scholar 

  • Kalow, W., and Gunn, D. R. (1959). Some statistical data on atypical cholinesterase of human serum.Ann. Hum. Genet. 23239–250.

    Google Scholar 

  • Karnovsky, M. J., and Roots, L. J. (1964). A “direct-coloring” thiocholine method for cholinesterases.J. Histochem. Cytochem. 12219–221.

    Google Scholar 

  • Kasa, P., Dames, W., Rakonczay, Z., Gulya, K., Joo, F., and Wolff, J. R. (1985). Modulation of the acetylcholine system in the superior cervical ganglion of rat: Effects of GABA and hypoglossal nerve implantation after in vivo GABA treatment.J. Neurochem. 441363–1372.

    Google Scholar 

  • Keynes, R. J., and Stern, C. D. (1985). Segmentation and neural development in vertebrates.Trends Neurosci. 8220–223.

    Google Scholar 

  • Koelle, G. B. (1963). Cytological distributions and physiological functions of cholinesterases. InCholinesterases and Anticholinesterase Agents (G. B. Koelle, Ed.), Springer, Berlin.

    Google Scholar 

  • Koelle, W. A., Koelle, G. B., and Smyrl, E. G. (1976). Effects of persistent selective suppression of ganglionic butyrylcholinesterase on steady-state and regenerating levels of acetylcholinesterase: Implications regarding function of butyrylcholinesterase and regulation of protein synthesis.Proc. Natl. Acad. Sci. USA 732936–2938.

    Google Scholar 

  • Koelle, G. B., Koelle, W. A., and Smyrl, E. G. (1977a). Effects of inactivation of butyrylcholinesterase on steady state and regenerating levels of ganglionic acetylcholinesterase.J. Neurochem. 28313–319.

    Google Scholar 

  • Koelle, W. A., Smyrl, E. G., Ruch, G. A., Siddons, V. E., and Koelle, G. B. (1977b). Effects of protection of butyrylcholinesterase on regeneration of ganglionic acetylcholinesterase.J. Neurochem. 28307–311.

    Google Scholar 

  • Koelle, G. B., Koelle, W. A., and Smyrl, E. G. (1979a). Steady state and regnerating levels of acetylcholinesterase in the superior cervical ganglion of the rat following selective inactivation of propionylcholinesterase.J. Neurochem. 331159–1164.

    Google Scholar 

  • Koelle, G. B., Richard, K. K., and Ruch, G. A. (1979b). Interrelationships between ganglionic acetylcholinesterase and nonspecific cholinesterase of the cat and rat.Proc. Natl. Acad. Sci. USA 766012–6016.

    Google Scholar 

  • Kostovic, J., and Rakic, P. (1984). Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining.J. Neurosci. 425–42.

    Google Scholar 

  • Kristt, D. A. (1979). Development of neocortical circuitry: Histochemical localization of acetylcholinesterase in relation to the cell layers of rat somatosensory cortex.J. Comp. Neurol. 1861–16.

    Google Scholar 

  • Kristt, D. A., and Waldman, J. V. 1981. Developmental reorganization of acetylcholinesterase-rich inputs to the somatosensory cortex of the mouse.Anat. Embryol. 16331–41.

    Google Scholar 

  • Krnjevic, K., and Silver, A. (1966). Acetylcholinesterase in the developing forebrain.J. Anat. 10063–89.

    Google Scholar 

  • Kugler, O. (1987). Improvement of the methods of Karnovsky and Roots for the histochemical demonstration of acetylcholinesterase.Histochemistry 86531–532.

    Google Scholar 

  • Kusano, K., Miledi, R., and Stinnakre, J. (1977). Acetylcholine receptors in the oocyte membrane.Nature 270739–741.

    Google Scholar 

  • Kutty, K. M. (1980). Biological functions of cholinesterase.Clin. Biochem. 13239–243.

    Google Scholar 

  • Lagenaur, C., and Lemmon, V. (1987). An L1-like molecule, the 8D9 antigen is a potent substrate for neurite extension.Proc. Natl. Acad. Sci. USA 847753–7757.

    Google Scholar 

  • Lankford, K. L., DeMello, F. G., and Klein, W. L. (1988). D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: Evidence that neurotransmitters act as morphogenic growth regulators in the central nervous system.Proc. Natl Acad. Sci. USA 852839–2843.

    Google Scholar 

  • Lauder, J. M., and Krebs, H. (1978). Serotonin as a differentiation signal in early neurogenesis.Dev. Neurosci. 115–30.

    Google Scholar 

  • Lauder, J. M., Towle, A. C., Patrick, K., Henderson, P., and Krebs, H. (1985). Decreased serotonin content of embryonic raphe neurons following maternal administration of p-chlorophenylalanine: A quantitative immunocytochemical study.Dev. Brain Res. 20107–114.

    Google Scholar 

  • La Vail, J. H., and Cowan, W. M. (1971). The development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development.Brain Res. 28391–419.

    Google Scholar 

  • Layer, P. G. (1983). Comparative localization of acetylcholinesterase and pseudocholinesterase during morphogenesis of the chick brain.Proc. Natl. Acad. Sci. USA 806413–6417.

    Google Scholar 

  • Layer, P. G., and Alber, R. (1990). Formation of chick brain vesicles including rhombomeres as revealed by peanut agglutinin and cholinesterases.Development 109613–624.

    Google Scholar 

  • Layer, P. G., and Sporns, O. (1987). Spatiotemporal relationship of embryonic cholinesterases with cell proliferation in chicken brain and eye.Proc. Natl. Acad. Sci. USA 84284–288.

    Google Scholar 

  • Layer, P. G., and Willbold, E. (1989). Embryonic chicken retinal cells can regenerate all cell layers in vitro, but ciliary pigmented cells induce their correct polarity.Cell Tissue Res 258233–242.

    Google Scholar 

  • Layer, P. G., Alber, R., and Sporns, O. (1987). Quantitative development and molecular forms of acetyl- and butyrylcholinesterase during morphogenesis and synaptogenesis of chick brain and retina.J. Neurochem. 49175–182.

    Google Scholar 

  • Layer, P. G., Rommel, S., Bülthoff, H., and Hengstenberg, R. (1988a). Independent spatial waves of biochemical differentiation along the surface of chicken brain as revealed by the sequential expression of acetylcholinesterase.Cell Tissue Res 251587–595.

    Google Scholar 

  • Layer, P. G., Alber, R., and Rathjen, F. G. (1988b). Sequential activation of butyrylcholinesterase in rostral half somites and acetylcholinesterase in motoneurones and myotomes preceding growth of motor axons.Development 102387–396.

    Google Scholar 

  • Layer, P. G., Alber, R., Mansky, P., Vollmer, G., and Willbold, E. (1990a). Regeneration of a chimeric retina from single cells in vitro: Cell-lineage-dependent formation of radial cell columns by segregated chick and quail cells.Cell Tissue Res. 259187–198.

    Google Scholar 

  • Layer, P. G., Weikert, T., and Willbold, E. (1990b). Expression of acetylcholinesterase in embryonic chicken neuronal cells in vitro is regulated by its own, and by butyrylcholinesterase (submitted for publication).

  • Lewis, P. D. (1978). Neurohumoral influences on cell proliferation in brain development.Trends Neurosci. 1/6158–159.

    Google Scholar 

  • Lipton, S. A., and Kater, S. B. (1989). Neurotransmitter regulation of neuronal outgrowth, plasticity and survival.Trends Neurosci. 7265–270.

    Google Scholar 

  • Lipton, S. A., Frosch, M. P., Phillips, M. D., Tauck, D. L., and Aizenman, E. (1988). Nicotinic antagonists enhance process outgrowth by rat retinal ganglion cells in culture.Science 2391293–1296.

    Google Scholar 

  • Loewi, O., and Navratil, E. (1926). Über humorale Übertragbarkeit der Herznervenwirkung. XI. Über den Mechanismus der Vaguswirkung von Physostigmin und Ergotamin.Pflügers Arch. 214689–696.

    Google Scholar 

  • Lyles, J. M., Silman, I., and Barnard, E. A. (1979). Developmental changes in levels and forms of cholinesterases in muscles of normal and dystrophic chickens.J. Neurochem. 33727–738.

    Google Scholar 

  • Lyles, J. M., Barnard, E. A., and Silman, I. (1980). Changes in the levels and forms of cholinesterases in the blood plasma of normal and dystrophic chickens.J. Neurochem. 34978–987.

    Google Scholar 

  • Mackie, E. J., Tucker, R. P., Halfter, W., Chiquet-Ehrismann, R., and Epperlein, H. H. (1988). The distribution of tenascin coincides with pathways of neural crest cell migration.Development 102237–250.

    Google Scholar 

  • Marchand, A., Chapouthier, G., and Massoulié, J. (1977). Developmental aspects of acetylcholinesterase activity in chick brain.FEBS Lett. 78233–236.

    Google Scholar 

  • Martelly, I., and Gautron, J. (1985). Formes moleculaires de l'AChE au cours de la differenciation in ovo et in vitro de la retine démbryon de poulet.Arch. Anat. Microsc. 74357.

    Google Scholar 

  • Masland, R. H., and Mills, J. W. (1979). Autoradiographic identification of acetylcholine in the rabbit retina.J. Cell Biol. 83159–178.

    Google Scholar 

  • Masland, R. H., and Mills, J. W. (1980). Choline accumulation by photoreceptor cells of the rabbit retinaProc. Natl. Acad. Sci. USA 771671–1675.

    Google Scholar 

  • Massoulié, J., and Bon, S. (1982). The molcular forms of cholinesterase and acetylcholinesterase in vertebrates.Annu. Rev. Neurosci. 557–106.

    Google Scholar 

  • McMahon, D. (1974). Chemical messengers in development: a hypothesis.Science 1851012–1021.

    Google Scholar 

  • McTiernan, C., Adkins, S., Chatonnet, A., Vaughan, T., Bartels, C. F., Kott, M., Rosenberry, T. L., LaDu, B. N., and Lockridge, O. (1987). Brain cDNA clone for human cholinesterase.Proc. Natl. Acad. Sci. USA 84 6682–6686.

    Google Scholar 

  • Meedel, T. H., and Whittaker, J. R. (1979). Development of acetylcholinesterase during embryogenesis of the ascidian Ciona intestinalis.J. Exp. Zool. 2101–10.

    Google Scholar 

  • Meller, K. (1964). Elektronenmikroskopische Befunde zur Differenzierung der Rezeptorzellen und Bipolarzellen der Retina und ihrer synaptischen Verbindungen.Z. Zellf. Mikr. Anat. 64733–750.

    Google Scholar 

  • Mendel, B., and Rudney, H. (1943). Studies on cholinesterase. 1. Cholinesterase and pseudocholinesterase.Biochem. J. 3759–63.

    Google Scholar 

  • Mesulam, M. M., and Moran, M. A. (1987). Cholinesterases within neurofibrillary tangles related to age and Alzheimers-disease.Ann. Neurol. 22223–228.

    Google Scholar 

  • Miki, A., and Mizoguti, H. (1982). Proliferating ability, morphological development and acetylcholinesterase activity of the neural tube cells in early chick embryos. An electron microscopic study.Histochemistry 76303–314.

    Google Scholar 

  • Mizoguti, H., and Miki, A. (1985). Interrelationship among the proliferating ability, morphological development and acetylcholinesterase acitivity of the neural tube cells in early chick embryos.Acta Histochem. Cytochem. 1885–96.

    Google Scholar 

  • Moody, S. A., and Stein, D. B. (1988). The development of acetylcholinesterase activity in the embryonic nervous system of the frog, Xenopus laevis.Dev. Brain Res. 39225–232.

    Google Scholar 

  • Muller, F., Dumez, Y., and Massoulié, J. (1985). Molecular forms and solubility of acetylcholinesterase during the embryonic development of rat and human brain.Brain Res. 331295–302.

    Google Scholar 

  • Nichols, C. W., and Koelle, G. B. (1968). Comparison of the localization of acetylcholinesterase and non-specific cholinesterase activities in mammalian and avian retinas.J. Comp. Neurol. 1331–15.

    Google Scholar 

  • Ozaki, H. (1974). Localization and multiple forms of acetylcholinesterase in sea urchin embryos.Dev. Growth Diff. 16267–279.

    Google Scholar 

  • Pilowsky, P. M., Hodgson, A. J., and Chubb, I. W. (1982). Acetylcholinesterase in neural tube defects: A model using chick embryo amniotic fluid.Neuroscience 71203–1214.

    Google Scholar 

  • Price, D. L., Whitehouse, P. J., Struble, R. G., Coyle, J. T., Clark, A. W., Delong, M. R., Cork, L. C., and Hedreen, J. C. (1982). Alzheimer's disease and Down's syndrome.Ann. N. Y. Acad. Sci 396145–164.

    Google Scholar 

  • Prody, C. A., Zevin-Sonkin, D., Gnatt, A., and Goldberg, O. (1987). Isolation and characterisation of full-length cDNA clones coding for cholinesterase from foetal human tissues.Proc. Natl. Acad. Sci. USA 843555–3559.

    Google Scholar 

  • Propert, D. N. (1979). Pseudocholinesterase and E-1 phenotypes in Down's syndrome and mental retardation.Hum. Hered. 29360–363.

    Google Scholar 

  • Puelles, L., Amat, J. A., and Martinez-de-la-torre, M. (1987). Segment-related, mosaic neurogenetic pattern in the forebrain and mesencephalon of early chicken embryos 1. Topography of AChE-positive neuroblasts up to stage HH 18.J. Comp. Neurol. 266247–268.

    Google Scholar 

  • Rager, G. (1986). Morphogenesis and physiogenesis of the retino-tectal connection in the chicken. II. The retino-tectal synapses.Proc. R. Soc. Lond. (Biol.) 192353–370.

    Google Scholar 

  • Rakonczay, Z. (1988). Cholinesterase and its molecular forms in pathological states.Prog. Neurobiol. 31311–330.

    Google Scholar 

  • Rathjen, F. G., and Schachner, M. (1984). Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion.EMBO J. 31–10.

    Google Scholar 

  • Rathjen, F. G., Wolff, J. M., Frank, R., Bonhoeffer, F., and Rutishauser, U. (1987). Membrane glycoproteins involved in neurite fasciculation.J. Cell Biol. 104343–353.

    Google Scholar 

  • Rickmann, M., Fawcett, J. W., and Keynes, R. J. (1985). The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite.J. Embryol. Exp. Morphol. 90 437–455.

    Google Scholar 

  • Robertson, R. T. (1987). A morphogenetic role for transiently expressed acetylcholinesterase in developing thalamocortical systems?Neurosc. Lett. 75259–264.

    Google Scholar 

  • Robertson, R. T., and Mostamand, F. (1988). Development of “non-specific” cholinesterasecontaining neurons in the dorsal thalamus of the rat.Dev. Brain Res. 4143–60.

    Google Scholar 

  • Rosenberry, T. L. (1975). Acetylcholinesterase.Adv. Enzymol. Relat. Areas Mol. Biol. 43103–218.

    Google Scholar 

  • Sauer, F. C. (1935). Mitosis in the neural tube.J. Comp. Neurol. 62377–406.

    Google Scholar 

  • Schumacher, M., Camp, S., Maulet, Y., Newton, M., MacPhee-Quigley, K., Taylor, S. S., Friedman, T., and Taylor, P. (1986). Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence.Nature (London)319407–409.

    Google Scholar 

  • Sheffield, J. B., and Moscona, A. A. (1969). Early stages in the reaggregation of embryonic chick neural retina cells.Exp. Cell Res. 57462–466.

    Google Scholar 

  • Shen, S. C., Greenfield, P., and Boell, E. J. (1956). Localization of acetylcholinesterase in chick retina during histogenesis.J. Comp. Neurol. 106433–461.

    Google Scholar 

  • Shute, C. C. D., and Lewis, P. R. (1963). Cholinesterase-containing systems of the brain of the rat.Nature 1991160–1164.

    Google Scholar 

  • Silver, A. (1974).The Biology of Cholinesterases, North-Holland, Amsterdam.

  • Smith, A. D., Wald, N. J., Chuckle, H. S., Stirrat, G. M., Bobrow, M., and Lagercrantz, H. (1979). Amniotic fluid acetylcholinesterase as a possible diagnostic test for neural tube defects in early pregnancy.Lancet 1685–688.

    Google Scholar 

  • Soreq, H., and Gnatt, A. (1987). Molecular biological search for human genes encoding cholinesterases.Mol. Neurobiol. 147–80.

    Google Scholar 

  • Soreq, H., Zamir, R., Zevin-Sonkin, D., and Zakut, H. (1987). Human cholinesterase genes localized by hybridization to chromosomes 3 and 16.Hum. Genet. 77325–328.

    Google Scholar 

  • Stedman, E., and Stedman, E. (1935). The relative choline-esterase activities of serum and corpuscles from the blood of certain species.Biochem. J. 292107–2111.

    Google Scholar 

  • Stedman, E., Stedman, E., and Easson, L. H. (1932). Choline-esterase. An enzyme present in the blood-serum of the horse.Biochem. J. 262056–2066.

    Google Scholar 

  • Stern, C. D., Sisodiya, S. M., and Keynes, R. J. (1986). Interactions between neurites and somite cells: Inhibition and stimulation of nerve growth in the chick embryo.J. Embryol. Exp. Morphol. 91209–226.

    Google Scholar 

  • Sun, Y. A., and Poo, M. M. (1987). Evoked release of acetylcholine from the growing embryonic neuron.Proc. Natl. Acad. Sci. USA 842540–2544.

    Google Scholar 

  • Topilko, A., and Caillou, B. (1988). Acetylcholinesterase and butyrylcholinesterase activities in human thyroid-cancer cells.Cancer 61491–499.

    Google Scholar 

  • Toutant, J. P., Massoulié, J., and Bon, S. (1985). Polymorphism of pseudocholinesterase in Torpedo marmorata tissues: Comparative study of the catalytic and molecular properties of this enzyme with acetylcholinesterase.J. Neurochem. 44580–592.

    Google Scholar 

  • Vigny, H., Gisiger, V., and Massoulié, J. (1978). “Nonspecific cholinesterase and acetylcholinesterase in rat tissues: Molecular forms, structural and catalytic properties, and significance of the two enzyme systems.Proc. Natl. Acad. Sci. USA 752588–2592.

    Google Scholar 

  • Villafruela, M. J., Barat, A., Villa, S. and Ramirez, G. (1980). Molecular forms of acetylcholinesterase in the chick visual system. Collagenase-released 21.5 S and 16.5 S species.FEBS Lett. 11091–95.

    Google Scholar 

  • Villafruela, M. J., Barat, A., Manrique, E., Villa, S., and Ramirez, G. (1981). Molecular forms of acetylcholinesterase in the developing chick visual system.Dev. Neurosci. 425–36.

    Google Scholar 

  • Villani, L., and Contestabile, A. (1982). Cytochemical study of cholinesterases in the normal and retino-deprived optic tectum of reptiles.J. Hirnforsch. 2355–66.

    Google Scholar 

  • Vollmer, G., and Layer, P. G. (1986a). Reaggregation of chick retinal and mixtures of retinal and pigment epithelial cells: The degree of laminar organization is dependent on age.Neurosci. Lett. 6391–95.

    Google Scholar 

  • Vollmer, G., and Layer, P. G. (1986b). An in vitro model of proliferation and differentiation of the chick retina: Coaggregates of retinal and pigment epithelial cells.J. Neurosci. 61885–1896.

    Google Scholar 

  • Vollmer, G., and Layer, P. G. (1987). Cholinesterases and cell proliferation in “nonstratified” and “stratified” cell aggregates from chicken retina and tectum.Cell Tissue Res. 250481–487.

    Google Scholar 

  • Vollmer, G., Layer, P. G., and Gierer, A. (1984). Reaggregation of embryonic chick retina cells: Pigment epithelial cells induce a high order of stratification.Neurosci Lett. 48191–196.

    Google Scholar 

  • Wald, N. J., and Chuckle, H. S. (1981). Amniotic fluid acetylcholinesterase electrophoresis as a secondary test in the diagnosis of anencephaly and open spina bifida in early pregnancy.Lancet 2321–324.

    Google Scholar 

  • Wallace, B. G. (1986). Aggregating factor from Torpedo electric organ induces patches containing acetylcholine receptors, acetylcholinesterase, and butyrylcholinesterase on cultured myotubes.J. Cell Biol. 102783–794.

    Google Scholar 

  • Weikert, T., Rathjen, F. G., and Layer, P. G. (1990). Developmental maps of acetylcholinesterase and G4-antigen of the early chicken brain: Long distance tracts originate from AChE-producing cell bodies.J. Neurobiol. 21(3) 482–498.

    Google Scholar 

  • Whittaker, M. (1986).Cholinesterase. Monographs in Human Genetics, Vol. 2 (L. Beckman, Ed.), Karger, Basel.

    Google Scholar 

  • Windle, W. F., and Austin, M. F. (1936). Neurofibrillar development in the central nervous system of chick embryos up to 5 days incubation.J. Comp. Neurol. 63431–463.

    Google Scholar 

  • Wolff, J. R. (1979). Hinweise auf eine Doppelrolle von GABA als synaptischer Transmitter und als morphogenetischer Faktor. InVerh. Dtsch. Zool. Ges. 1979, G. Fischer, Stuttgart, pp. 194–200.

    Google Scholar 

  • Yates, C. M., Simpson, J., Gordon, A., Maloney, A. F. J., Allison, Y., Ritchie, I. M., and Urquhart, A. (1983). Catecholamines and cholinergic enzymes in presenile and senile Alzheimer type dementia and Down's syndrome.Brain Res. 280119–126.

    Google Scholar 

  • Zakut, H., Matzel, A., Schejter, E., Avni, A., and Soreq, H. (1985). Polymorphism of acetylcholinesterase in discrete regions of the developing human fetal brain.J. Neurochem. 45382–389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layer, P.G. Cholinesterases during development of the avian nervous system. Cell Mol Neurobiol 11, 7–33 (1991). https://doi.org/10.1007/BF00712798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712798

Key words

Navigation