Skip to main content
Log in

A study of the performance of a land surface process model (LSPM)

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In this paper, a reliable Land-Surface Process Model (LSPM), which is a new version of the LPM of Ji and Hu (1989), is described. The LSPM has been validated with experimental data measured at two stations in the Po Valley (Northern Italy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

soil parameter

C 1c :

dimensional parameter forr b (s0.5 m−1)

c D :

drag coefficient

c n :

cloudiness index

c p :

specific heat (J kg−1 K−1)

C s :

soil thermal capacity (J m−3 K−1)

d :

zero plane displacement (m)

D 0 :

characteristic dimension of leaves (m)

D c :

drainage rate of vegetation for water (m s−1)

d i :

level depth into soil (i=1,2...) (m)

d r :

root layer depth (m)

D η :

term of soil capillarity (m s−1)

E :

evaporation flux (generic) (kg m−2 s−1)

e a :

vapor pressure into air (Pa)

E tr :

transpiration flux (kg m−2 s−1)

E g :

evaporation flux from bare soil (kg m−2 s−1)

f 1 :

corrective function for air emissivity

f 2 :

Louiset al. function

f 3(R i ):

“haze” function (Equation (27)

f h :

relative humidity of soil first layer

g :

gravity acceleration (m s−2)

G ritrmax:

maximum global radiation (at clear sky) (W m−2)

h :

vegetation height (m)

H :

sensible heat flux (W m−2)

k :

Von Karman constant

k(z) :

thermal conductivity (m2 s−1)

\(K_\eta ,K_{\eta _s }\) :

hydraulic conductivity (saturated) (m2 s−1)

L tc :

leaf area index (m2 m−2)

M c , Mcm :

water interception storage (and its maximum) (m)

m i :

constants for the functionf 2(R i ) (i=1, 2)

m j :

parameters for soil resistance (j=3, 4) (s m−1)

P :

precipitation (m s−1)

p :

pressure (Pa)

Q g :

heat flux into/from soil (W m−2)

q, q s :

specific air humidity (and saturated val.) (kg kg−1)

r :

resistance (s m−1)

\(\Delta r\) :

runoff (m s−1)

r a :

aerodynamic air resistance (s m−1)

r b :

resistance of leaf boundary layer (s m−1)

r c :

vegetation (stomatal) resistance (s m−1)

r d :

resistance soil-atmosphere (s m−1)

R d :

constant of gas (dry air) (J kg−1 K−1)

Ri:

Richardson number

r min :

minimum vegetation resistance (s m−1)

R lw :

longwave radiation flux (W m−2)

R n :

net radiation (W m−2)

r soil :

soil resistance (s m−1)

R sw :

shortwave radiation flux (W m−2)

R max/↓ sw :

maximum diurnal global radiation flux (W m−2)

R w :

specific gas constant for water vapour (J kg−1 K−1)

s :

conductance (m s−1)

T i :

temp. ofith underground layer (i=1, 2,...) (K)

u * :

friction velocity (m s−1)

u ac :

air-canopy wind velocity (m s−1)

u c :

wind velocity in close proximity to foliage (m s−1)

v min :

minimum wind velocity (“haze effect”) (m s−1)

v max :

maximum wind velocity (“haze effect”) (m s−1)

W f :

wetted vegetation fraction (%)

w i :

relative humidity into soil (i=1, 2, ...) (%)

z, z a :

reference level (m)

Z :

zenital angle (deg)

z 0 :

roughness length (m)

α:

albedo

α s :

albedo of soil (humidity dependence)

α smax :

albedo of “dry” soil

α w :

albedo of water

α Z :

albedo of soil (zenital angle dependence)

β:

Bowen ratio

∈:

emissivity

α :

emissivity of sky

ζ:

Monin-Obukhov length (m)

η, η s :

volumetric water content (and saturated) (m3 m−3)

η wi :

wilting point (m3 m−3)

λ:

soil heat conductivity (W m−1 K−1)

λυ :

latent heat of vaporization (J kg−1)

ρ:

density (kg m−3)

ρ a :

air density (kg m−3)

ρ s :

soil density (kg m−3)

ρ w :

water density (kg m−3)

σ:

Stefan-Boltzmann constant (W m−2 K−4)

σ c :

vegetation cover (fraction)

Φ:

latitude (deg)

ϕ, ϕ s :

humidity potential (and saturated) (Pa)

“1”, “2”,...:

layers into soil

a”:

air at reference level

ac”:

air within the vegetation (or canopy)

c”:

vegetation (or canopy)

d”:

downward

g” (or “s” or “l”):

soil, terrain

s”:

saturated value

u”:

upward

w”:

water

References

  • Abramopoulos, F., Rosenzweig, C., and Choudhury, B.: 1988, “Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration’,J. Climate 1, 921–941.

    Google Scholar 

  • Al Nakshabandi, G. and Kohnke, H.: 1965, ‘Thermal Conductivity and Diffusivity of Soils as Related to Moisture Tension and Other Physical Properties’,Agric. Meteorol. 2, 271–279.

    Google Scholar 

  • André, J. C.: 1985. ‘Multi-Level Boundary Layer Scheme. Physical Parametrization for Numerical Models of the Atmosphere’,ECMWF Seminar, 9–13 Sep., pp. 33–34.

  • Barry, R. G. and Chorley, R. J.: 1982,Atmosphere, Weather and Climate, Methuen.

  • Brutsaert, W.: 1982,Evaporation into Atmosphere, D. Reidel Publishing Company.

  • Cassardo, C., Ji Ji, J. J., and Longhetto, A.: 1990, ‘Sensitivity Analysis and Validation with Experimental Data of a Land Surface Exchange Model, for Use in Drought and Desertification Studies’,The Third International Summer Colloquium on Climate Change Dynamics and Modeling, 14–20 August 1990, China Meteorological Press.

  • Clapp, R. B. and Hornberger, G. M.: 1978, ‘Empirical Equation for some Soil Hydraulic Properties’,Water Resources Res. 14, 604–606.

    Google Scholar 

  • Deardorff, J. W.: 1978, ‘Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of a Layer of Vegetation’,Geophys. Res. 83(4), 1889–1903.

    Google Scholar 

  • Dickinson, R. E.,et al.: 1981, “Boundary Subroutine for the NCAR global climate model’,NCAR, Technical Note, NCAR/TN 173 1A.

  • Dickinson, R. E.: 1984, ‘Modeling Evapotranspiration for Three-Dimensional Global Climate Models’, in J. E. Hansen and T. Takahashi (eds.),Climate Process and Climate Sensitivity, Vol. 29, Geophysical Monograph, pp. 58–72.

  • Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., and Wilson, M. F.: 1986, ‘Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model’,NCAR Tech. Note, NCAR/TN-Z75 str. Boulder, Colorado.

  • Dickinson, R. E.: 1988, ‘The Force-Restore Model for Surface Temperature and its Generalization’,J. Climate 1, 1086–1097.

    Google Scholar 

  • Dorman, J. L. and Sellers, P. J.: 1989, ‘A Global Climatology of Albedo, Roughness Length and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB)’,J. Appl. Meteorol. 28, 833–955.

    Google Scholar 

  • Giuliacci, M.: 1988,Climatologia Fisica e Dinamica della Valpadana. E.R.S.A., Servizio Meteorologico Regionale, Italy.

    Google Scholar 

  • Idso, S. B., Jackson, R. D., Reginato, R. J., Kimball, B. A., and Nakayama, F. S.: 1975, ‘The Dependence of Bare Soil Albedo on Soil Water Content’,J. Appl. Meteorol. 14, 109–113.

    Google Scholar 

  • Jacquemin, B. and Noilhan, J.: 1990, ‘Sensitivity Study and Validation of a Land Surface Parametrization using the Hapex-Mobilhy Data Set’,Boundary-Layer Meteorol. 52, 93–134.

    Google Scholar 

  • Ji, J. J. and Hu, Y.: 1989, ‘A Simple Land Surface Process Model for use in Climate Study’,Acta Meteorologica Sinica, Pergamon Press, Vol. 3, pp. 344–353.

  • Kim, J. and Verma, S. B.: 1990, ‘Components of Surface Energy Balance in a Temperate Grassland Ecosystem’,Boundary-Layer Meteorol. 50, 401–417.

    Google Scholar 

  • Landsberg, H. E.: 1985,World Survey of Climatology, Elsevier Publishing Company Inc.

  • Lin, J. D. and Sun, S. F.: 1986, ‘A Method for Coupling Parametrization of the Planetary Boundary Layer with a Hydrologic Model’,Climate and Applied Meteorol. 25, 1971–1976.

    Google Scholar 

  • Louis, J. F., Tiedke, M., and Geleyn, J. F.: 1981, ‘A Short History of the PBL Parametrization at ECMWF’,Workshop on PBL Parameterization, ECMWF, Reading, pp. 59–79.

  • McCumber, M. C.: 1980, ‘A Numerical Simulation of the Influence of Heat and Moisture Fluxes upon Mesoscale Circulation’, Ph.D. Dissertation, University of Virginia, Charlottesville.

    Google Scholar 

  • McCumber, M. C., and Pielke, R. A.: 1981, ‘Simulation of the Effects of Surface Fluxes of Heat and Moisture in a Mesoscale Numerical Model, Part I — Soil Layer’,J. Geophys. Res. 86, 9927–9938.

    Google Scholar 

  • Noilhan, J. and Planton, S.: 1989, ‘A Simple Parametrization of Land Surface Processes for Meteorological Models’,Monthly Weather Review 117, 536–549.

    Google Scholar 

  • Oke, T. R.: 1978,Boundary Layer Climates, Halsted Press, NY.

    Google Scholar 

  • Page, J. K.: 1986,Prediction of Solar Radiation on Inclined Surfaces, D. Reidel Publishing Company.

  • Pielke, R. A.: 1984,Mesoscale Meteorological Modeling, Academic Press.

  • Sellers, P. J., Minitz, Y., Sud, Y. C., and Dalcher, A.: 1986, ‘A Simple Biosphere Model (SiB) for Use within General Circulation Models’,J. Atmos. Sci. 43(6), 505–531.

    Google Scholar 

  • Sellers, P. J. and Dorman, J. L.: 1987, ‘Testing the Simple Biosphere Model (SiB) Using Point Micrometeorological and biophysical Data’,J. Clim. and Appl. Meteorol. 26, 622–651.

    Google Scholar 

  • Stull, R. B.: 1988,An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers.

  • Staley, D. O. and Jurica, G. M.: 1972, ‘Effective Atmospheric Emissivity under Clear Skies’.J. Appl. Meteorol. 11, 349–355.

    Google Scholar 

  • Wilson, M. F., Henderson-Sellers, A., Dickinson, R. E., and Kennedy, P. J.: 1987, ‘Investigation of the Sensitivity of the Land Surface Parametrization of the NCAR Community Climate Model in Region of Tundra Vegetation’,J. Climatol. 7, 319–343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassardo, C., Jun, J. & Longhetto, A. A study of the performance of a land surface process model (LSPM). Boundary-Layer Meteorol 72, 87–121 (1995). https://doi.org/10.1007/BF00712391

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712391

Keywords

Navigation